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Measurement and Calculation of Developing Turbulent Flow

in a U-Bend and Downstream Tangent of Square Cross-Section

ABSTRACT

Experimental measurement and numerical modeling has been performed

on the flow in a 1800 bend of square cross-section, Dreceeded and follow-

ed by straight ducts of the same cross-section.

Measurements of mean velocities and their associated turbulent

stresses along the streamwise (e) and the gapwise or radial (r) direc-

tions have been made at several longitudinal planes, using the non-

intrusive laser-Doppler velocimeter technique in backscatter mode.

Mean flow data reveal features in qualitative agreement with results

obtained from inviscid flow analysis. Measurements of the turbulent

stresses display previously undocumented anisotropic characteristics

arising from shearing motions induced in the core of the flow. In the

downstream tangent, measurements show that drastic reductions of the

secondary motion take place in less than 5 hydraulic diameters. From

then on, however, the flow recovers only slowly from the effects of

the bend.

Numerical predictions using a k-E model of turbulence have been

- performed for the experimental configuration. Model deficiencies are
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more clearly revealed by the higher order accuracy of the finite differ-

encing scheme used and the implementation of a partially-parabolic cal-

culation algorithm. It is found that, with the problem of numerical

diffusion relieved, false physical diffusion and the isotropic character-

istics inherent in the model are the main causes for the differences

observed between measurements and computations.

Additional predictions with an algebraic stress model (ASM) show

poor agreement with the measurements. As a result, two "experimental"

tests have been carried out to check indirectly the predicting ability

of the ASM closure. It is found that the proposed model is capable of

resolving the anisotropy of the turbulence correctly, provided that the

mean velocity field is known accurately.
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FOREWORD

This report represents the culmination of a four year effort under-

taken at the Berkeley Campus, aimed at measuring and making predictable

the turbulent flow in passage through a 1800 curved duct of square cross

section. The research program initially started out as a joint venture

with the Davis campus of the University of California. After year one,

the Davis portion of the program, under the direction of Professor Brian

E. Launder, was moved to the University of Manchester Institute of Science

and Technology. In spite of the distances and difficulties involved, the

close and beneficial collaboration with Professor Launder and his group

at UMIST continued uninterruptedly throughout the duration of the

program in Berkeley. We are indebted to Mr. K. Ellingsworth of the

Office of Naval Research for making the collaboration possible.

Whereas research in UMIST has centered on the heat transfer aspects

of turbulent flow in bends, that in Berkeley has dealt exclusively with

the fluid mechanics. At the time of writing measurements are being

obtained, in Berkeley, in a 1800 curved pipe to extend the data base

available. The results will be reported in a subsequent addendum to this

report. The data will be used by the UMIST team to test and validate a

numerical procedure for predicting turbulent flow in curved ducts of

circular cross-section.

' *
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CHAPTER 1. INTRODUCTION

1.1 The Problem of Interest

Considerable efforts have been devoted to the study of flow in

curved conduits over the past 40 years due to its fundamental as well

as industrial importance. When a fluid flows through a curved duct of

square cross-section, the radial pressure gradient established in the

core region (directed to the center of curvature) acts upon the slower

moving fluid near the side walls, causing the fluid there to move to

the inner (convex) side of the bend. In turn, faster moving fluid in

the core region moves to the outer (concave) side of the bend, producing

i 'the secondary motion depicted in Figure 1.1. In addition to the pres-

sure-gradient driven secondary flow described above, gradients of the

turbulent stresses in a plane normal to the main flow direction can

also produce secondary motion in ducts of non-circular cross-section.

The sense of this secondary motion in a straight duct of square cross-

section is shown in Figure 1.2 over a quarter of the cross-section. It

carries high momentum fluid from the core region toward a corner along

the corner bisector and pushes low momentum fluid near the walls back

to the central region along the wall bisectors. This secondary motion

causes the contours of mean longitudinal velocity to bulge toward the

corners and, as a result, enhances the heat transfer rate and shear

stress there. In the literature, the secondary motion induced by stream-

line curvature is usually referred to as the "secondary motion of the

first kind" whereas that produced by gradients of turbulent stresses is

L IP.
' '
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sometimes called the "secondary motion of the second kind." The theory

of both types of secondary motions has been reviewed by Johnston [1978].

The flow configuration of interest to the present study consists

of a 1800 circular bend of square cross-section preceeded and followed

by straight ducts or tangents. This U-shaped geometry is found in

numerous piping systems and industrial flow configurations. In par-

ticular, it is directly relevant to compact heat exchangers. The flow

patterns established in and downstream of a U-bend strongly influence

the heat transfer characteristics which, in turn, dictate the overall

performance of a heat exchanger. The study of this type of flow also

provides further understanding of turbulent flow phenomena in turbo-

machinery components and, thus, can lead to the improved design of

these components.

1.2 Objectives

The primary objectives of this study are:

1) To obtain measurements of the mean flow and turbulence charac-

teristics by means of laser-Doppler velocimetry in a U-bend and down-

stream tangent of equal square cross-section.

Because the present configuration involves the combined effects of

flow in a 1800 bend and the downstream tangent, a complex flow of very

distinct and previously undocumented velocity characteristics emerges.

Besides serving to advance understanding of the flow, the experimental

data should also be of value for developing and testing turbulence

- models suitable for three-dimensional complex turbulent flows.

I -9 '~mmi n mmmli dm aa " -, -, ..
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2) To test the respective capabilities of a two equation (k-c)

model and an algebraic stress model of turbulence for predicting the

mean flow and its turbulence characteristics.

Previous elliptic calculations of Humphrey et al. [1981] with a

k-c model for turbulent flow in a 900 bend of square cross-section

yielded results in poor agreement with their measurements for bend

angles greater than 45*. However, in that study it was not possible

to separate satisfactorily the inadequacy of the k-e model from inaccur-

acies of numerical origin. Subsequent work by Chang et al. [1982] using

a partially-parabolic procedure and a quadratic upwind-weighted inter-

polation for convection terms (the QUICK scheme) yielded substantially

improved predictions. In the present study their numerical procedure

is employed whenever possible to establish more precisely the performance

and limitations of the two turbulence models explored.

1.3 Earlier Work

1.3.1 Experimental Studies

Measurements of turbulent flows in bends of constant rectangular

cross-sections have been made by Joy [1950), Eichenberger [1952, 1953]

and Squire [1954] and, more recently, by Bruun [1979), Humphrey et al.

[1981] and Taylor et al. [1982]. Joy [1950) measured the total pressure

distributions in three rectangular bends (aspect ratio 2:1) of different

radii to the bend center for two turning angles (either 900 or 1800).

He discovered that for the 1800 configuration, the direction of secondary

motion was reversed at a bend angle around e = 1350. Further experimental
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evidence of the oscillatory nature of secondary motions in bends of pro-

longed curvature were also found by Eichenberger [1952] and Squire [1954],

and was summarized by Hawthorne [1963].

In a study on the influence of inlet boundary layer thickness on

secondary flow development and pressure losses, Bruun [1979] performed

detailed measureements of mean values of the total pressure, static

pressure and velocity fields as well as limited measurements of tur-

bulence intensity distributions in two 1200 bends of rectangular cross-

sections. By analyzing the measurements, he was able to present a

physical description of the secondary flow processes.

The measurements of developing mean flow and turbulence charac-

teristics in a 90 bend of square cross-section by Humphrey et al.

M [1981) and Taylor et al. [1982) are directly related to the present

work. These studies were performed by using Laser-Doppler velocimetry

techniques in the same bend for the same Reynolds number. The only

difference between the two experiments was the boundary layer thickness

of the flow at the bend inlet plane. In the work of Taylor et al.

[1982) thin boundary layers were purposefully induced at the bend inlet

plane, whereas in Humphrey et al. [1981] essentially fully developed

straight duct flow was presented as the inlet condition. The most

marked differences between the results of these two studies were, in

general, the: a) stronger secondary motion, and b) higher levels of

turbulence, experienced by the flow with thicker inlet boundary layers.

Detailed measurements of the much weaker Reynolds stress driven

secondary motions for the case of developing flow in a duct of square

cross-section have been reported by Melling and Whitelaw [1976], and in
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a series of papers by Gessner et al., the latest reference being [1982].

It is noteworthy that the flow field measurements of Humphrey et al.

[1981] and Taylor et al. [1982] do not show the symmetric corner vortex

structures characteristic of straight duct flow. This supports the

notion that in the bend sections of these studies the cross-stream flow

was influenced more strongly by the transverse mean pressure-gradient

than by gradients of the Reynolds stresses.

1.3.2 Numerical Calculation/Modelling

Curved duct turbulent flow calculations based on the numerical

solution of the Navier-Stokes equations have been made by Humphrey,

Whitelaw and Yee [1981] for their experimental configuration, and more

(711 recently by Buggeln, Briley and McDonald [1980] for the flow measured

by Taylor, Whitelaw and Yianneskis [1982]. In the work of Humphrey et

al. [1981) a two-equation k-e model of turbulence was used whereas

Buggeln et al. [1980] employed the one-equation model investigated by

Shamroth and Gibeling [1979]. In general, both studies show good agree-

ment between measurements and calculations of the mean velocity compon-

ents up to a bend angle of approximately 450, but as of this point sig-

nificant deviations appear. For bend angles larger than 450 calculations

of Buggeln et al. [1980] are in better accord with the measurements than

corresponding results of Humphrey et al. [1981]. This is attributed

primarily to the thinner boundary layer inlet condition present in the

measurements of Taylor et al. [1982], which was responsible for the pro-

duction of weaker secondary motions than were observed and predicted by

Humphrey et al. [1981]. It should be remarked that cost considerations
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dictated the use of coarse grids in both of the above studies and, since

significant levels of numerical diffusion probably affected the results,

there is an inadequate basis for judging the merits and demerits of the

turbulence models used respectively by the authors.

A review of computational methods for internal flows has been car-

ried out by McNally and Sockol [1981]. The following is a brief summary

relating to numerical techniques of relevance to this work. Within the

class of numerical methods which neglects streamwise diffusion is the

partially-parabolic procedure proposed by Pratap and Spalding [1975] for

calculating flow in curved ducts. In this method, iterated forward

marching sweeps of the three-dimensional flow field are performed,

yielding solutions of the momentum equations and corrections to the

pressure field, until local and global continuity are attained. This

type of numerical procedure was used by Chang et al. [1982] to predict

the flow of Humphrey et al. [1981] after modifying the procedure to in-

clude quadratic upstream interpolation of convection terms as in Han

et al. [1981] to reduce numerical diffusion. In general, better agree-

ment was found in Chang et al. [1982] than in Humphrey et al. [1981]

between mean velocity measurements and calculations as a consequence of

the numerical improvements to the calculation scheme.

Inviscid flow approximations for the calculation of flows in curved

ducts have been proposed by, for example, Briley and McDonald [1979].

The numerical procedure developed by these authors represents an exten-

sion of viscous forward marching methods in that it accounts approximate-

ly for transverse variations in streamwise pressure gradient. While this

approach appears particularly promising for fast and relatively inexpen-
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sive curved flow computations, work continues on its development and

application; see Krekovsky, Briley and McDonald [1980].

In contrast to the pressure-dominated flows arising in curved ducts,

the difficulties associated with predicting Reynolds stress driven secon-

dary motions in ducts of non-circular cross-section are principally re-

lated to the accurate modeling of cross-stream turbulent flow anisotropy.

Brundrett and Baines [1964] have shown that the turbulence term contribut-

ing most strongly to mean streamise vorticity in steady, incompressible,

constant property flow is -2 (u - u . In a later study, Perkins

a2 a2
[1970] also demonstrated the importance of the term (-2-

In these terms, y, z, uy and uz are the cross-stream coordinates and

velocity fluctuations respectively. It can readily be shown that tur-

bulence models based on the notion of an isotropic turbulent viscosity,

such as the k-c model, cannot account for the generation of stress-

driven secondary motions. In their recent study, Naot and Rodi [1981]

have reviewed briefly various investigations employing Reynolds stress

level closures to predict these motions. They conclude that the essen-

tial basic flow features can be predicted qualitatively with relatively

simple algebraic stress closures. It is noteworthy that, except for the

full Reynolds stress closure predictions by Reece [1976], all numerical

studies of the problem have neglected convection and diffusion contribu-

tions to the balance of uTP thus implying the condition of a homogen-

eous turbulent flow.
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1.4 Outline of the Thesis!p

The remainder of this thesis describes the study performed in

greater detail throughout the next six chapters. In Chapter 2 the

experimental program is presented. This includes descriptions of the

apparatus and instrumentation, the experimental methodology, and the

major error sources with estimates of their magnitudes. In Chapter 3

the numerical model framework for predicting turbulent flows is estab-

lished. In Chapter 4 the concept of partially-parabolic flows is intro-

duced, followed by a detailed account of the numerical procedure as

well as the boundary conditions used.

The performance of the numerical procedure and the turbulence

models were separately checked, by reference to calculations of several

appropriately documented flows. The results of these tests are pre-

sented in Chapter 5. Chapter 6 discusses the measured and calculated

results. Finally, major conclusions and specific recommendations are

summarized in Chapter 7.

[p
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CHAPTER 2. THE EXPERIMENT

2.1 Introduction

In this chapter the experimental part of the research project is

described. Section 2.2 outlines the flow system, the instrumentation,

and the flow conditions for which data were taken. Section 2.3 details

the experimental methodology and finally, Section 2.4 discusses major

error sources and estimates of their magnitudes.

2.2 Flow System and Instrumentation

The experimental system was composed of: a water rig, of which the

most important component was the flow test section; a laser-Doppler

velocimeter and its associated electronic instrumentation; a motorized

traversing mechanism; and a PDP-ll/34a Digital Equipment Corporation

minicomputer.

The basic components of the flow test section and the coordinate

systems are shown schematically in Figure 2.1, and comprised two straight

ducts and a bend of square cross-sections. The tangents were each 31

hydraulic diameters long and were respectively attached to the 00 (inlet)

and 1800 (outlet) planes of the bend. The ratio of bend mean radius of

curvature to hydraulic diameter was Rc/DH = 3.35. The bend component

was constructed by machining an open, curved channel of mean radius of

curvature Rc = 14.92 cm (t 0.02 cm) into one of the faces of a large,

flat, solid piece of plexiglass 7.6 cm thick. A plexiglass plate 1.27 cm
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thick was machined to fit snugly as a lid over the open channel piece,

so yielding an enclosed curved duct shape of cross-section dimensions

4.45 x 4.45 cm2 (+0.02 x 0.02 cm2). An O-ring seal placed between the

open channel piece and the lid prevented water leaks. The modular form

of this construction made disassembly easy for surface cleaning pur-

poses. The upstream and downstream tangents were each 138 cm (+ 0.02

cm) long and were also constructed from plexiglass, with flat walls

1.27 cm thick. These two ducts were joined by flanges to the bend,

with special care taken to avoid possible mismatches between the com-

ponent cross-sections which otherwise might disturb the flow.

A flow-straightening section 7.15 hydraulic diameters long was

placed upstream of the straight duct attached to the bend inlet plane.

The purpose of this device was to uniformize and accelerate the devel-

opment of the cross-stream plane distribution of the flow approaching

the bend in the upstream tangent. Various arrangements of differently

sized stainless steel screens were tested in combination with one or

more perforated plexiglass plates 3.175 cm thick, containing 85 holes of

3.175 mm diameter arranged in a rectangular array spaced 4.495 mm on the

centers in each direction. The most successful arrangement of plates

and screens in the uniformizing section was found experimentally and is

shown in Figure 2.2.

The test section was part of a closed loop system through which

water at 200C was made to flow by gravity from a constant head tank.

From this tank the flow passed through the test section, and then into

a large sump tank from where it was pumped back to the constant head

tank by a 3/4 HP Burkes centrifugal pump. The constant head was ensured



by a large diameter PVC overflow pipe extending through the bottom of

the head tank. Flow to the head tank was controlled by a gate valve

and measured using a 2 in. Barco venturi meter (P.N. 2-393) connected

to a 50 in. (1.27 m) differential mercury manometer. In order to rule

out the possibility of propagating perturbations induced by flow com-

ponents, the use of valves, sharp bends and metering devices was avoided

altogether along the test section flow loop. Flow to and from the test

section tangents was channelled through 2 in. i.d. tygon tube pieces;

flexible enough to be bent without kinks over a large radius of curva-

ture, yet stiff enough to avoid wall collapse due to flow-induced pres-

sure drop. Baffles located in the constant head tank served to dampen

the swirling motion of the flow leaving the tank. Residual swirl from

the head tank and secondary motions induced by mild curvature in the

tygon tube upstream of the test section were eliminated by the flow-

uniformizing section placed between the tygon tube and the upstream tan-

gent. All experiments were conducted for the flow rate condition imposed

by the constant head tank. This corresponded to a Reynolds nunai of

Re = 56,700 and a Dean number of De = 21,900 in the flow test section.

Measurements of the mean flow and turbulence characteristics were

made using the laser-Doppler velocimeter technique in backscatter mode.

The velocimeter employed is shown schematically in Figure 2.3 in rela-

tion to the flow test section. It comprised a 2 watt Lexel Argon-Ion

water-cooled laser, a mirror stage for reflecting the laser beam 1800

into the velocimeter optics, the optics, and a 4 in. (10.2 cm) diameter

mirror for reflecting the converging velocimeter beams from the horizon-

tal to the vertical direction. This mirror also served the function of
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reflecting the back-scattered Doppler-shifted radiation into the veloci-

meter collecting optics. The optics were of the DISA 55X Modular Series

and consisted of: two separately adjustable quarter-wave retardation

plates; a 50:50 neutral beam splitter; a beam color splitter; a back-

scatter unit (containing a mirror inclined 450 with respect to the

velocimeter optical axis, and serving to support at right angles to the

optical axis the photomultiplier optics consisting of: a color separa-

tor; two interference filters and two RCA-4526 photomultiplier tubes);

a pinhole section; a beam translator and a 310 mm achromatic focusing

lens.

The laser and velocimeter optics were mounted to the top of a thick

aluminum table, which was itself firmly bolted to an x, y, z traversing

m mechanism. The traversing mechanism could displace the table top f 7.5

cm in 5 um increments along any of the coordinate axes by means of three

linearly encoded stepping motors monitored by the Digital Equipment

Corporation PDP ll/34a minicomputer. The minicomputer functioned as

the central data acquisition and reduction controller. In addition to

directing the spatial sequence of an experimental run, the computer was

programmed to conduct the acquisition, statistical processing, plotting

and storage of Doppler data validated and measured by a DISA 55L96

Doppler signal processor or "counter". The PDP ll/34a has a 256 K 16

bit random access memory and is equipped with dual hard RLO1 magnetic

disc drives (5 Mbytes each). The computer interacts by means of an RT-ll

software package with various input-output devices, including a Tektronix

4025 graphics terminal, a Decwriter II hardcopy terminal and a Tektronix

4662 digital pen plotter.
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2.3 Experimental Methodology

Prior to an experimental run, water was allowed to flow through the

rig until it was purged of air bubbles and had attained a steady thermal

state corresponding to 20*C (t PC). Mass flow through the test section

was controlled by setting the constant head overflow condition to a mere

trickle and continuously monitoring the pressure drop through the ven-

turi meter connected to the head tank feed line.

At any given streamwise measurement station, the velocimeter sup-

port table was manually positioned such that the velocimeter horizontal

optical axis was oriented perpendicular to the test section side; see

Figure 2.3 for an example corresponding to a streamwise location of

e = 1800. Fine adjustments to the 900 beam deflector mirror ensured

that the velocimeter vertical optical axis was perpendicular to the test

section top surface. In combination, these adjustments produced a fringe

pattern which was parallel (to within + 0.30 at any y, z cross-section

location) to the cross-stream plane of the test section. The velocimeter

optical probe volume was formed by the intersection of two 514.5 nm

(green) light beans with a half-angle in air of 4.900, for which the

volume characteristics were: a diameter of 0.09 mm, a length of 1.1 mm,

and a fringe spacing of 3.02 um with about 28 fringes contained in the

probe. In reality, spatial filtering and threshhold settings on the

counter reduced the dimensions of the optical probe. The probe volume

was positioned at the top outer-wall corner, inside the test section,

by fine control of the motorized traversing table. Positioning in the

x and y coordinate directions was accurate to within + 0.05 mm while

positioning in the z direction was accurate to better than + 0.5 mm.
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With the reference corner position at a streamwise location estab-

lished, the computer software was activated which controls signal acqui-

sition and data processing on a sequentially scanned measurement-grid.

After flow symmetry had been established at various streamwise stations,

the bulk of the measurements were restricted to a symmetrical half of

the test section, on a grid consisting of 4 to 5 profiles at different

z locations, each containing 29 to 31 equally spaced points in the y

direction. At each point on the measurement-grid the mean flow and

turbulence characteristics were statistically determined from popula-

tions of 5 to 10 samples consisting of 1,000 measurements each. Each

measurement was required to satisfy the counter 5/8 validation compari-

son to within a preset tolerance of 3%. At every validation of a Doppler

burst a "data ready" signal was issued by the counter to a logic conver-

sion circuit. This circuit then sent a triggering pulse to the computer

parallel line interface module which was checked for data availability

by a software loop approximately every 20 ps. No interrupt routines

were used for obtaining data due to the higher sample rates made possi-

ble by the handshake technique. Data rates of about 1 kHz, with approxi-

mately 60% validation, were obtained after the flow was seeded with corn-

starch particles ranging in size between 1 and 10 Um. Optical alignment

and automatic grid scanning were performed at the following streamwise

locations: XH = -5, -1, 1, 5, 10, 20 in the straight ducts, and 6 = 30,

450, 90° , 1300, 1770 in the bend.

Although capable of two-component measurements; the availability of

4 only one counter during the early stages of thiswork restricted the use

of the velocimeter to single channel mode for most of the experiments.
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Values for the streamwise component of mean velocity and normal stress,

Ueand u2, were derived directly from measurements obtained with the

velocimeter fringes aligned perpendicularly to the streamwise coordinate

direction. Values for the transverse components, Ur and ur, and for the

Reynolds stress, ueur, were derived as described in Melling and Whitelaw

[1976] by combining measurements obtained with fringes oriented at angles

of + 450 and - 45' with respect to the streamwise direction. As a check,

measurements of U and u obtained in this manner were found to agree to

within experimental error with the direct observations. Measurements

involving the velocity component in the spanwise (z) coordinate direc-

tion could not be made accurately due to optical inaccessibility of the

flow.

While the bulk of the measurements were made in the manner described

above, with the velocimeter in single channel mode, towards the end of

the experiment the availability of a second counter allowed us to per-

form a limited number of measurements using the two velocimeter channels

simultaneously. For this case the interference fringe patterns were

respectively aligned parallel and perpendicular to the streamwise velo-

city component. To resolve flow directional ambiguity, and also to

optimize the filter range of the counters, a net frequency shift of 700

kHz was imposed on both channels using a DISA 55NI0 Brag cell combined

with electronic downmixing. In this way additional measurements at

XH = -5, -1, 1 and 5 in the respective tangents were obtained. In addi-

tion, careful checks were conducted of the data previously obtained at

XH = -5 and 5 and at e = 30 and 1770. In general, the checks showed

very good agreement between the two measurement methods, for both of the
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velocity components and their respective normal stresses. However, at

XH = 5 the two methods differed markedly with respect to the measure-

ment of the very weak transverse velocity component arising at this

location. The first method consistently showed larger scatter in the

measurements and the uncertainty was ultimately traced to relatively

small but significant inaccuracies associated with determining the

+ 450 orientations required by this method. At XH = -5, -1, 1 and 5,

and a = 30, it is the more accurate frequency-shifted transverse

velocity data which is reported here.

2.4 Error Estimates

Error sources affecting the accuracy (systematic error) and preci-

sion (random error) of laser-Doppler measurements have been discussed

by, for example, Durst, Melling and Whitelaw [1976], Drain [1980] and

Buchhave [1979]. In this study the most serious systematic errors were

attributed to velocity gradient broadening and velocity bias respective-

ly. Velocity gradient broadening has been analyzed by Melling [1975]

who proposed a simple method for estimating its magnitude. Various

weighting methods have been proposed by, among others, McLaughlin and

Tiederman [1973], George [1975] and Buchave [1975] to correct for the

velocity bias effect, but none of these is entirely satisfactory; they

all involve assumptions regarding the statistical distribution of par-

ticles in the flow and, in practice, the corrections can be influenced

by the additional problem of "Incomplete-signal bias". For the condi-

tions of this study, gradient broadening and velocity bias were estimated

to be significant only in the near wall regions of the flow, where
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velocity gradients and turbulence intensities were highest and the data

rate lowest. Fortunately, the errors are of similar magnitude and of

opposite sign, tending to cancel out their respective effects on the

measurements. For this reason, and because the errors were small anyway,

corrections were not applied to the measurements. Table 2.1 presents

estimates of the maximum combined inaccuracies of these two error

sources on the quantities measured.

Values of the transverse mean velocity component, Ur, and of the

Reynolds stress, ueur , were prone to a third systematic error. At the

last four locations in the bend, and at XH = 10 and 20, these two

quantities were derived from measurements taken at + 450 and - 450 to

the streamwise flow direction. An error in setting this 900 angle

could seriously affect the accuracy of these measurements. The problem

has been considered by Humphrey [1977] for a flow of similar character-

istics to the present one, and he shows that an angular uncertainty of

0.40 can lead to an error of 5% in Ur and + 3% in ueur-. In this work

special care was taken to ensure a maximum angular uncertainty of less

than 0.30 in setting the + 450 bean orientations.

The two main sources of random error affecting the precision of

the measurements were attributed to statistical sampling uncertainty

(due to the finite size of sample populations) and uncertainty in the

determination of the reference or normalizing velocity, UB. Estimates

of the first uncertainty were derived from the measurements themselves

and, for all quantities, were found to be less than + 1% r.m.s. error.

The error in UB was larger (t 2%) and arose principally from uncertain-

ties in the construction of the venturi meter. As a further check, the
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bulk mass flow at each longitudinal station was estimated by integrating

the measurements. This yielded a value of UB which was within + 6%

of the venturi meter measurement. Estimates of the maximum combined

effects of these two errors on the measurements are provided in Table

2.1.

Measurements of the pressure coefficient, Cp, in the straight and

curved duct test sections, using side wall pressure tappings connected

to an inclined manometer bank, were also prone to a random r.m.s. error

ranging from + 10% at low absolute values of C to + 5% at the higher

values. The uncertainty in C was due mainly to the reading error

associated with the manometer bank.

* "

0-
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CHAPTER 3. MEAN FLOW EQUATIONS AND TURBULENCE MODELS

3.1 Introduction

In this chapter the numerical modeling framework for predicting

turbulent flows is detailed. Section 3.2 presents the mean flow equa-

tions and discusses the problem of closure common to all nonlinear sto-

chastic systems. Section 3.3 describes the models tested in the present

study. These include the k-s model of turbulence in Section 3.3.1 and

the algebraic stress model (ASM) in Section 3.3.2. The model constants

for both the k-s and the ASM closures are also given in Section 3.3.2.

Finally, the ASM relations appropriate for the present flow configuration

is sumnarized in Section 3.3.3.

3.2 Mean Flow Equations and the Problem of Closure

In the present study numerical calculations of turbulent flows were

based upon the time-averaged Navier-Stokes equation and continuity equa-

tion as first proposed by Osborne Reynolds. For a statistically station-

ary flow of a fluid with uniform density p, Reynolds decomposition of the

field variables followed by time averaging of the resulting equations

yields

Continuity:

+~~rr)+-L('U)+?j I.( LZ) -0 (3.2.1)

0 7r%
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Momentum:

(fjbruVUoP + -j ULs,)q ('z~)-

(p r +tj +

(3.2.2)

+b -~ TZ- I l bur

(3.2.3)

(prLW +(f oUZ) + (f UZ UZ) -

______ __ ~z(3.2.4)
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- where lower and upper case u's stand for fluctuating and time-averaged

velocity components respectively, P represents mean pressure, overbars

imply time averaging of the correlations in question and p denotes the

viscosity of the fluid.

Equations.(3.2.1) to (3.2.4) can be applied to both cylindrical

(r, e, z) and rectangular (y, x, z) coordinate systems. To get the

appropriate equations in rectangular coordinates, set j = 0 and r = 1

and make the following substitutions:

- -T r T Ue"Ux and Ur Uy

wherever they appear. The governing equations in cylindrical coordinates

can be deduced simply by setting j = 1 in equations (3.2.1) to (3.2.4).

Unfortunately, the above set of equations can not be solved directly

for the mean velocities and pressure due to the appearances of the six

correlations: UrUr , uue , UU , UrU U ruz and ueu . The quantities

-PUr' -pueue, - -PUrU , -PUrUz and -pueuz are known as turbulent

or Reynolds stresses. Exact transport equations for these correlations

can be derived, however they contain correlations of even higher order

due to the nonlinear nature of the equations. "Closure" therefore can

not be achieved by resorting to solving transport equations of higher

and higher order. Instead, model approximations must be introduced at

a certain order In terms of lower order correlations and mean quantities.

4 This constitutes the task of turbulence modeling which is the subject of

next section.
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3.3 Modeling of Turbulence

As mentioned earlier, the role of turbulence modeling is to provide

a path for the determination of the Reynolds stresses appearing in equa-

tions (3.2.2) to (3.2.4). Depending upon the level of closure and the

generality/complexity desired, a wide variety of models have been pro-

posed and tested. For a comprehensive review, see Launder and Spalding

[19721, Reynolds [1976] and Rodi [1978). Two models of turbulence were

selected for the present study: a two-equation (k-E) model and an

algebraic Reynolds stress model. Their essential features are outlined

in the next two subsections.

3.3.1 k-e Model

Following Boussinesq [1877], the turbulent stresses are related to

the mean rate-of-strain tensor via the definition of an isotropic tur-

bulent viscosity, v.. In cylindrical/rectangular coordinates, these

relations take the forms given below.

~1UPt 2!)-1e (3.3.1.1)

P't( 2 )k (3.3.1.2)

Pt "Uz) k (3.3.1.3)
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-s , t ( , - j "(3.3.1.4)

b - bur (3.3.1.5)

- L t _z(3.3.1.6)

Equations (3.3.1.1) to (3.3.1.6) are completely analogous to the

constitutive relations for an incompressible flow of a Newtonian fluid,

except for the additional term 2pk/3 which appears in each of the normal

stress relations. This addition is necessary to ensure that the defini-

tion of turbulence energy

k r1 ueue + z z~

is not violated.

Substituing equations (3.3.1.1) to (3.3.1.6) into equations (3.2.2)

to (3.2.4) and rearranging yields:

Orf~'' AS U fr4~~fg~rj~ -b

r Dr r" b ,_ _ r r

+ U" + (.) +

(3.3.1.7)
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*With the Boussinesq eddy viscosity approximation, the task of

modeling is shifted to the determination of . Using the k-e model,

1 t is determined from two turbulence quantities: the turbulence energy

k and its rate of dissipation q, via the relation

k2

It  pC (3.3.1.10)

Ij E

where C.i, to first approximation, is a constant of proportionality.

Following Jones and Launder [1972), the modelled k and c transport

equations are:

i.)- # (frLlk) + (f Lhk)+ ( U-zk) - P E

(3.3.1. 11)

0 -L+ vrrL) +

r(3.111%12)+ r + E
p°° r kre z1

(3.3 1.12
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I r ras bz Z j b

r (33.113)

Equations (3.2.1) and (3.3.1.7) to (3.3.1.13), together with appro-

priate boundary conditions form a closed system. Results of k-E model

calculations will be presented in Chapter 6.

3.3.2 Algebraic Stress Model

Algebraic stress models (ASM's) are special cases of full Reynolds

stress models proposed by, among others, Hanjalic and Launder [1972]

and Launder et al. [1975].

The starting point of ASM is the transport equation for uiu j .  For

a fluid of uniform density and viscosity and unaffected by external force

fields, this equation can be written as:

*For ease of presentation and general discussion, Cartesian tensor nota-

tion is adopted in this section. Final algebraic relations appropriate
to both cylindrical and rectangular coordinates are summarized in
Secticn 3.3.3.

0 . , -. a . - . -J .,,,,, .,, 4 m mlm l b I.L . .. D... . -
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Ui 4

CONVECTION PRODUCTION (D j) DISSIPATION (€ij)

PIISSUI E--TRAIN j) DIMi1OiJ ( . ( U)

(3.3.2.1)

Equation (3.3.2.7) is obtained by multiplying the instantaneous

x momentum equation by uj and adding it to the instantaneous x. momen-

turn equation multiplied by ui then time-averaging the resultant equa-

tion. The physical process represented by each term is also indicated,

for a detailed explanation, see Tennekes and Lumley [1972].

With closure at the second-order (uu.) level, the production term

contains only turbulent stresses and mean velocity gradients and, there-

fore, requires no modelling. The dissipation and pressure-strain correla-

tion terms were modelled as in Gibson and Launder [1978] with

- 2 (3.3.2.2)

and

oij Oij,l + €ij,2 + ij,l + 0ij,2 (3.3.2.3)

Equation (3.3.2.2), first proposed by Rotta [1951], is based upon

-- the supposition that the dissipative motions are isotropic for flows at

relatively high Reynolds numbers. The pressure-strain term plays an
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influential role in the uiu j equations. Since this term makes no net
contribution to the turbulence energy but merely redistributes it among

the normal stresses, it is also referred to as the "redistribution"

term. The theoretical background for modelling pi. in terms of equa-

tion (3.3.2.3) was discussed in Hanjalic and Launder [1972] and Launder

et al. [1975]. It can be shown that there are three types of physical

processes which dictate the distribution of ¢ij: 1) mutual interactions

between turbulence components (ij,l); 2) mean rate-of-strain interacting

with the turbulence (Oij, 2 ); and 3) corrections to Oij,l and ij,2

resulting from the presence of walls (¢'ij,l and O'ij2). The modelling

of the four terms in equation (3.3.2.3) is outlined next.

For oij,l' Rotta's [1951] proposal was adopted whereby

C (U 2 6 k) (3.3.2.4)

The primary functions of this term are to equalize normal stresses and

to diminish to zero shear stresses. For this reason, it is usually

referred to as the "return-to-isotropy" term.

For ij,2' Launder et al. [1975] have suggested

(P. P) (3.3.2.5)

Oij,2 -"2(Pij -3 6i)

as the simpler alternatives for a more complete model of which the first

term, apart from a proportionality constant, is the same as that given

in equation (3.3.2.5).

Experiments show that the presence of a wall affects the turbulence

by damping the fluctuating velocity component normal to the wall and by

9 . enhancing those components along the other two directions. In the

present study these wall effects were modelled through 2and assua s2
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3 3
ij C ( ) (UkUm nkn m  ii " 2 nknj " - U nU nkni)f( __L_)k u i ri

(3.3.2.6)
l 3- nk n. - 2 bkj nkn i ) f(- r.--)
Cij,2 - C2( km nknm 6ij 3

(3.3.2.7)

where r. is the position vector to the point in question, Z is a charac-

teristic turbulent length scale, ni is the unit normal to the wall and f

is an empirical function of distance whose primary role is to diminish

the respective influences of ijl and O'ij,2 with increased distance

from the wall. Equation (3.3.2.6) was first proposed by Shir [1973) in a

numerical study of atmospheric turbulent flows in the idealized planetary

boundary layer. Gibson and Launder [1978] later extended Shir's idea to

account for the wall effect expressed by 'ij,2 as given by equation

(3.3.2.7). For a two-dimensional straight channel, f was assumed to

vary as recommended by Reece [1977] according to the expression

fZy k 3/2 1l- k-- -  [-+ 1 -1 (3.3.2.8)

where y is the distance measured from one of the two walls and D is the

channel width. The constant CW was chosen such that f - 1 as y - 0. It

can be shown that in a region where the logarithmic law of the wall pre-

vails and the turbulence is in local equilibrium that CW = iK/C 3/4. For

flows inside a square duct with two sets of opposing walls, it was

assumed, following Reece [1977], that the influences of both sets of

walls on *ij are independent of each other and can be added algebraically.

The model assumptions introduced so far in equations (3.3.2.2) to

(3.3.2.8) for E and 0iJ are algebraic since they contain no spatial
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gradient of the Reynolds stresses. If the remaining convection and

diffusion terms in the uiu.-transport equation can also be modelled by

expressions without gradients of u j, equation (3.3.2.1) is reduced

to the following algebraic form

uiu = uu(U--p ' k, e). (3.3.2.9)

Models of this kind have been proposed by Launder [1972] and Rodi [1976]

and it was the more general model of Rodi which was adopted in the

present study.

Following Rodi [1976], the convection and the diffusion terms were

modelled collectively as:

Dt, --9.u = k [ - (k)] (P - ) (3.3.2.10)
-13

where S( ) stands for "diffusion of the quantity in parenthesis." The

second part of equation (3.3.2.10) results from mere definition. Sub-

stituting all the modelling assumptions into equation (3.3.2.1) and

rearranging yields

e =2 x 2 r + - ijl+ ij,2))ij k 3 ij = - 3 ij 3 1 1-C2

(3.3.2.11)

with

I - C2

!!= P/ + (C1 -I

P -u". U

and 0'iJl and 'ij,2 given by equations (3.3.2.6) to (3.3.2.8).Ullij,

L.
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It is also necessary to provide a means for the determination of

k and e and this was achieved by solving modelled transport equations

for both variables. Following Launder et al. [1975], the k and e

equations adopted, in cylindrical/rectangular coordinates, are:

+~( rUrk) + (f Us ) -t(f Uz )mC P
r br ' b O b

+i

-z

(3.3.2.13)

p E

-° b



32

where

rb_ bbu-
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Equations (3.3.2.12) and (3.3.2.13) are identical to those used for the

k-s model, except for diffusion terms which are now approximated without

introducing the notion of an isotropic turbulent viscosity, U

The determination of the model constants appeared in Sections

3.3.1 and 3.3.2 have been made by: 1) available experimental data for

simple flows; and 2) computer optimization. For a comprehensive review,

see the lecture notes of Launder [1980]. The set of model constants

adopted for the present study is listed below:

= 0.4187

C = 0.09

k = 1.0

2= 2 /(C 2 " C 1 C)/C 1 / 2

= l .44

C = 1.92

= E3 0.36 (Ce2 - el)

Ckl = 0.22

C1 = 1.8

C2 = 0.6

Cj =0.5

C= 0.3

3.3.3 Summary of the ASM Relations for Flows in a Duct of Square

Cross-Section

The ASM outlined in Section 3.3.2 with Cartesian tensor notation

is summarized here for both the straight and the curved flow configura-
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tions of interest to this study.

The expressions for e ij Pij. 'ij,l and 'ij2' when expanded in

cylindrical/rectangular coordinates, take the forms given below:

': ~ ~ ~ q e,,. 2 p) (P' + I¢,,*2

e. - -9u- _ -Ix (P.- 9P) + 1_- Cz a'. , + 2)

e.,z -'P + -Z I, + Oz* t ,. 2)

- I

erz - - : Pit * (Pr.., i rz.,)j

K E I-CI

P, -2 t G Lu- + GW_. j z .) + u 1,, ,

[ P,,,--b [ r ( j+& + , m.,.r b

2[ Wu ,-U +j .- U +. ,
1 ~Po r UT Q# "b r " I . . I "+'+" +i + I ii ...
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O'z, c ( 2) ) ,-2(t,:-,.))
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0,2 15 C 2'Ppp

3 3

4# 2 LS Czzoz P

Where

cw z ,-zj

and

Y = (r-r 1)
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Straight-forward but tedious manipulation of the above expressions

result in the following algebraic relations for the six unknowns err,

eee, e re erz and e

ee"z e z r :

b~r I
err 1-64 1~ A4 e. 85 kL4p * LF

r rr

'az ra 0 zI

-2A1 Uz + 2 (12A2) Nr+ 2A4 A3

err ". •~ 1.5A

... ' L 1 A31 A 421- A2. 95 Ar -. j
&r ur 3 1 I.z 4A[_8 dB1Lus + Br)

Iber 1b1 *b3

!L(.21 A3 2A4 ~ 2A -- 2 I -

for) Ur
'br b
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G4 - 2k
3E

1 2(I2AI) +A2

B2 - 1+2(AI-A2)

83 - 1+2A1-A2

B4 - 2 ( 2A2) 4A1

B5= I+2AZ -Ai

BC 2"AIA2

B7 IS I' L5Ai L5A2)

B8 - I (.I.5A1)

dl 89 - L5(I.I.A2).
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CHAPTER 4. NUMERICAL PROCEDURE

4.1 Introduction

In view of the complexity of the governing equations, solutions to

the problem are sought via numerical methods. In the present study, the

structure and strategy of the TEACH calculation procedure developed at

Imperial College [1976] are adopted, with major modifications to take

advantages of the partially-parabolic nature of the flow. Section 4.2

introduces the concept of partially-parabolic flow and discusses the

consequence of this classification in terms of the describing equations.

Section 4.3 details the discretization practices. Section 4.4 summar-

izes the boundary conditions for the calculations. Finally, Section

4.5 outlines the solution algorithm.

4.2 Partially-Parabolic Flows

There are primarily three mechanisms which transmit local distur-

bances to other points of a flow: convection, molecular diffusion and

pressure waves. Strictly speaking, all steady subsonic flows are ellip-

tic in the sense that perturbations at a point can influence the flow

state at any other point. A solution to this type of problem requires

the specification of boundary conditions on a closed boundary of the

flow domain. From a computational point of view, however, two addi-

tional classifications are possible: parabolic flows and partially-

parabolic flows.
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In terms of the three mechanisms mentioned above, a flow situation

is classified as being partially-parabolic if along a certain direction

-. the only means for transmitting local disturbances upstream is through

the pressure field; there must be no flow reversal and diffusion should

be negligible along the "partially-parabolized" direction.

The flow configuration of interest to the present study falls into

the category of partially-parabolic flows as long as the bend is not so

tight as to render flow reversal along the main flow direction. The

problem of a deflected jet or a jet in a crosswind flow, as studied by

Bergeles [1976), can also be classified as pertaining to the partially-

parabolic category.

The immediate consequence of this "partial-parabolization" is that

all the underlined terms in the equations presented in Chapter 3 are

assumed negligible and so were neglected in the calculations. The

validity of this simplification was checked by Humphrey et al. [1981]

for turbulent flow in a square duct of strong curvature. It was found

from their calculation that the longitudinal diffusion was no larger than

2% of the longitudinal convection. It would appear, therefore, that a

partially-parabolic procedure accounting for strong pressure variations

could provide more precise results through increased grid refinement.

Since all transport equations given in Chapter 3 share the same

* general form

(4.2.1)

with So including all the remaining terms, the following discussions on

discretization will be based upon equation (4.2.1).
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4.3 Discretization

The first step toward discretization is the arrangement of a con-

venient grid system. For the present study, a staggered grid was adopted

as shown in Figures 4.1 and 4.2. This choice minimizes the amount of

interpolation needed and improves stability. The locations of the Rey-

nolds shear stresses were also staggered to the places as indicated in

*a these figures.

Following the standard approach of TEACH-type codes, equation

(4.2.1) is integrated over a control volume chosen for the variable 4.

Using central differencing for the diffusion terms, the integrated form

of equation (4.2.1), with all the subscripts and dimensions referred to

Figure 4.3, becomes

i ~ ~CA€ -C.€k+., c,,C4S +CA¢ 44--MOM ,t -

Dw (4)p- Ow) Dn (Om -Op) Ds(Op -s-)4TA V

where
o.[Ce - ' {rA Ole (f UXle

C. -(rdraG). (fUz).

C,, - (AZdGB ,(U,)n

6 -" . -
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D. -(r~rAO)wrw/(z)e

Ds -(rAZA8)srs/(rr)s
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S. "J 54 rdrdedz



44

The source term 7q AV may be conveniently separated into two parts

as Sp p+ S in order to take full advantage of the solution algorithm.

A more elaborate discussion of this practice and its benefits will be

found in Patankar [1980].

For the convection terms, a proper approximation of the O's at the

control-volume surfaces has been proven to be crucial to the stability

of the solution algorithm. The accuracy of the calculated results also

depends strongly on the way these terms are simulated. A brief outline

is given next of the schemes chosen for the present study.

1 For *d and Ou which stem from convection along the main flow direc-

tion, upwind differencing was invariably usd with d = pand u p where p

stands for the value of p at the adjacent upstream station. This choice

is in line with the notion of a partially-parabolic flow in that, along

this direction, there is no flow reversal and that diffusion is negli-

gible.

2 For tes *w' O n and 0s over a cross-stream plane, two types of

approximations were used: the central/upwind (HYBRID) scheme and the

quadratic upwind-weighted interpolation (QUICK) scheme.

HYBRID: This scheme, first proposed by Spalding [1972], is based on

an approximation to the exact solution of the one-dimensional convec-

tion-diffusion equation

between two points with known O's. It employs upwind differencing where
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the flow is convection-dominated and shifts to central differencing

otherwise. The determining parameter is the local Peclet number defined

as Pe = pUt A/r; the flow is considered to be convection-dominated if

IPel > 2. Thus, in terms of an approximation for Ce' the HYBRID scheme

yields

6e : (E + if jPej < 2

e OCP if Pe > 2

e CE if Pe < -2.

Similar expressions can easily be constructed for the O's at the other

control-volume surfaces. Note that when upwind differencing is used

at the condition of convection-dominance, diffusion at the corresponding

cell surface is neglected.

It has long been known that upwind schemes, while removing the

stability problems associated with central differencing schemes, may

introduce severe numerical diffusion arising primarily from streamline-

to-grid skewness. This unphysical diffusion can cause serious difficul-

ties for turbulence modelers who, in order to evaluate the performance

of turbulence models, need to eliminate from their computations all the

inaccuracies and uncertainties due to the finite difference practices.

Alternatives to the HYBRID scheme have been proposed and tested in the

literature, see Huang, Launder and Leschziner [1983] for a brief review.

QUICK: In an attempt to overcome the numerical diffusion problems

associated with upwind schemes and to combine the accuracy of central

differencing with the stability of upwind differencing, Leonard [1979]

Sproposed a three-point, upwind-weighted quadratic interpolation to

approximate the O's at the control-volume surfaces. The proper formulae
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* for, say, 0e are

e= + +  + ae

where ae+ 5i/il)/8 i if Ce > 0

- /8i% if C < 0

and e (6) 2 (E/fi + Cw/6il)/ 8Ai if Ce > 0

n(dEE - ¢E)/SI+ E i8i+1 e

with symbols and dimensions defined in Figure 4.4. Formulae appropriate

for O's at other surfaces are summarized in Table 4.1. Details of the

QUICK scheme can be found in Leonard [1979] and of its performance in

Han et al. [1981] and Huang et al. [1983].

With the formulae given above and the difference form of the con-

tinuity relation

Cd = Cu + Cs -Ce + C w  n

equation (4.3.1) may be written as

apop = aN€N + asS  + aE¢E + awW + au¢o + + QU (4.3.2)

where

ap = aN + aS + aE + aW + aU - Sp -

and the a's denote the combined contributions of convection and diffu-

sion at the control volume surfaces to the balance of Op at the cell

center.

Depending upon the differencing scheme chosen for the O's over a

cross-stream plane, the expressions for a's, Q and Qp take the different
U P

V-°
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forms given below.

For the HYBRID scheme:
C

aE = - D 01
E  -Ce e 2 2

C

W ICw w 2
°", C

aN =1-Cn ,Dn - , O1
n n 2

C
as Cs  D + - , O

s 's 2
a =C
U u

= Q U = 0

where I I stands for "the largest quantities compared".

For the QUICK scheme:
aN D= D Cn

nD 2 n

as : Ds + Cs

aE -De Ce

a D1, + -aW Dw 2w

U =u

Qp= Cweaw  Cee + Csas Cnan

Q Cw - Cee + Css " Cn

Equation (4.3.2) represents the general form of the finite differ-

ence equation to be solved. The solution procedure adopted for the

present study will be outlined after a brief description in the next

section of the boundary conditions prescribed numerically.
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4.4 Numerical Prescriptions of Boundary Conditions

Symmetry of the flow configuration with respect to the plane z 0

allowed the performance of calculations over one symmetrical half of the

duct cross-section. The specification of required boundary conditions

is summarized below.

At the inlet plane, which is chosen at 5 DH upstream of the bend

section, U x , Uy, u x , UT and u u were interpolated from measurements
y~ xy

2
at the same station; U , uz and u u were deduced from symmetry consider-

ations; and, in the absnece of any reliable information, u u was set to

zero. The distribution of e was prescribed by setting

3/4 k3/2/

with Z m the mixing length, found from a generalization of the straight

pipe formula of Nikuradse [1932] to a square duct geometry. The formula

used was

Z = m DH[z(I " 1.2 Z) . 3 (1 - 1.2 5y)]/2

with

-S (I -1 and 3 (I -

H H.y DH DH

At the exit plane, chosen at 5 DH downstream of the bend exit,

aU /ax = 0 was imposed.

Along the symmetry plane at z = 0, the derivatives of U, Uy, P,

k and E as well as U itself were set to zero.

At solid walls, the wall-function approach outlined in Launder and
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Spalding [1974] was adopted. This, in essence, consists in specifying

boundary conditions near the walls rather than at the walls. The first

S.i calculation node, P, is placed at a distance yp away from a wall in a

region where the logarithmic law of the wall prevails and in which the

turbulence is in a state of local equilibrium and the shear stress T

is approximately equal to that of the wall, TW" Within this equilibrium

layer, it can be shown that

kp- u/Ic '.a and - LJ AYP

L -and E 9 9.793

These were the conditions imposed near wall. Since there are no relia-

ble experimental correlations for the form of the law of the wail, if

exists at all, for complex, three-dimensional skewed boundary layer

flows, the lateral velocities Ur and Uz were assumed to follow the same

logarithmic relation as that for Ue outlined above.

4.5 Solution Algorithm

0
In the present study the elliptic numerical procedure of Humphrey

[1977) was modified, according to the guidelines of Pratap [1975], to

perform partially-parabolic calculations. The pertinent features of

the solution algorithm are:

1. Calculation is performed 4y marching through the flow domain along
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the main flow direction as many times as is required for a predeter-

mined convergence criterion to be achieved.

2. The pressure distribution is always stored in a three-dimensional

array for the entire flow field so that it can be corrected and

updated during each sweep of the flow domain.

3. The remaining flow variables are continuously recalculated and are

stored temporarily in two-dimensional arrays at the current com-

puting station and, for velocity components only, at the correspond-

ing upstream station. Because of this practice, nonlinear convec-

tion terms in the momentum equations are linearized with respect

to their values at the upstream station (rather than their values

at the current station from the previous sweep).

4. The hydrodynamic variables are solved by a slightly modified ver-

sion of the SIMPLE procedure. For a detailed account of the SIMPLE

procedure, see Patankar [1980].

5. The discretized equations are solved by a line-by-line iterative

procedure--the tridiagonal matrix algorithm (TDMA).

The major calculation steps are summarized below:

1. Assign initial guessed values to the pressure field.

2. Solve the momentum equations for the cross-stream velocity compon-

ents Ur and Uz

3. Solve the Ue momentum equation. Note that U0 is located ahead of

the plane containing Ur and Uz (see Figure 4.2).

4. Update the pressure and velocity distributions according to the

modified SIMPLE algorithm.

5. Solve the remaining transport equations (k and c).
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6. Calculate the Reynolds stresses from the ASM relations (ASM only).

7. March to the next downstream station and repeat Steps 2 to 6 until

the exit plane of the calculation domain is reached.

8. Repeat Steps 2 to 7 with the most recent, more correct pressure

distribution as the new initial guess until convergence is achieved.

The immediate advantage of the partially-parabolic procedure over

the elliptic one is that the storage requirement for the same grid den-

sity is drastically reduced for the former. Due to this tremendous

savings on computer memory, it becomes, in principle, feasible to compute

three-dimensional flows on a grid system refined enough to render numeri-

cal diffusion an insignificant portion of the numerical accuracy. For a

more detailed exposition of the partially-parabolic procedure, see the

Ph.D. dissertation of Pratap [1975].

,.I.



Ae 52

CHAPTER 5. VALIDATION

5.1 Introduction

The finite-difference forms of the governing equations, together

with the appropriate boundary conditions were coded, following the

guidelines of Pratap [1975], into a computer program which solves three-

dimensional, partially-parabolic flows in cylindrical/rectangular coor-

dinates. Prior to predicting the main flow of interest to the present

study, rigorous testing was performed against several flows with either

known analytical or reliable numerical solutions or generationally

a ccep ted experimental information.

The purpose of testing was twofold:

1. To check the correctness of the procedure.

The present algorithm was obtained by modifying the eliiptic pro-

cedure of Humphrey [1977]. In order to ensure that the modifications

had been carried out properly, predictions of laminar flows in the fol-

lowing geometries were performed:

i two-dimensional straight channel;

ii two-dimensional curved channel;

iii straight duct of square cross-section with one wall moving at

a constant speed normal to the main flow direction;

iv 900 bend of square cross-section with a long straight duct

preceeding it.

9 -- The results of the testing are summarized and discussed in Section

5.2.
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2. To evaluate the performance of the k-E model and the ASM

closures adopted for this study.

Numerous examples of predictions obtained with these two models

have already been published in the literature (see, for example, the

review of Rodi [1978]). The present tests were conducted to ensure

that there were no coding errors in the portion of the program concern-

ing the turbulence models and, more importantly, to evaluate the per-

formance of these models within the framework of a partially-parabolic

procedure. The test geometries selected were a two-dimensional straight

channel and a two-dimensional curved channel. The results of these tur-

bulent flow tests will be discussed in Section 5.3.

2 5.2 Laminar Flow Tests

In this section, the four laminar flow test cases are described and

their results briefly discussed. The two-dimensional flow tests of i

and ii were predicted by imposing two symmetry conditions along the

third (z) direction of the three-dimensional code. Calculations of

cases i, ii and iii were carried out by using a plug flow profile as

the inlet condition, whereas a fully developed velocity profile was

imposed at the inlet plane in case iv.

Case i Developing flow in a two-dimensional straight channel

A HYBRID scheme calculation on a (y = 17) x (x = 101) equally

spaced grid was performed over a symmetrical half of the channel. As

shown in Figure 5.1 the calculated fully developed velocity profile

follows the analytical solution almost identically, with the maximum
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deviation, which occurs at the first node next to the channel wall,

being less than 2%.

Case ii Developing flow in a two-dimensional strongly curved channel.

In order to test the appropriateness of the concept of partially-

parabolic flows, a strongly curved channel was purposefully chosen.

Figure 5.2 shows the calculated fully developed velocity distribution

as compared to the exact solution (Goldstein [1965]). Agreement is

excellent and the maximum deviation from the analytical solution, which

occurs at the first node next to the inner wall at r = ri, is less than

3.5%. This calculation was performed with the HYBRID scheme using a

* (r : 22) x (e = 183) uniformly spaced grid.

Case iii Developing flow in a straight duct of square cross-section

with one wall sliding normal to the main flow direction at a constant

speed.

This flow was calculated with both the HYBRID and the QUICK schemes

on an equally spaced grid of (y = 15) x (z = 15) x (x = 121). The cal-

culation of Burggraf [1966] was chosen as the standard for comparison.

Figure 5.3 demonstrates clearly the superiority of the QUICK scheme over

the HYBRID scheme. In fact, a calculation with the QUICK scheme using a

(y = 8) x (z = 8) x (x = 121) grid produced results similar to those

generated in the aforementioned HYBRID calculation.

Case iv Flow in a 900 bend of square cross-section with fully developed

velocity profile close to the inlet of the bend.

The particular flow calculated corresponds to the measurements of

Humphrey et al. [1981] at Re = 790 and De = 368. Both the HYBRID and
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the QUICK schemes were used on a (r = 17) x (z : 11) x (6 = 36) uniformly

spaced grid. The agreement with measurements was generally very good at

" bend angles of 00, 300 and 90*, with discrepancies of U, up to 30% being

. found at 6 = 60'. Figure 5.4 compares the calculated longitudinal velo-

city profiles at Z = 0.5 DH and e = 90* (refer to Figure 2.1 for coor-

dinate system) with experimental results. The QUICK scheme calculation

* again yielded better overall agreement with the measured data.

5.3 Testing of Turbulence Models

The laminar flow tests presented in the previous section have

demonstrated the applicability of the partially-parabolic procedure

for predicting internal flows of characteristics similar to the present

study. This section provides further validation on the turbulence

models used.

Case i Flow in a two-dimensional straight channel.

This is the simplest possible, yet very informative test that can

be performed by using the current computer program with minor modifica-

tions. For the purpose of comparison, the experiment of Laufer [1950]

at Re = 123,200 was simulated on an unequally spaced grid of (y = 18) x

(x = 241) over a symmetrical half of the channel. Following the experi-

mental correlation of Laufer, the log-wall constants of K = 0.33 and

E = 6.14 were used instead.

Figures 5.5 and 5.6 show the calculated distributions, using k-E

model, of the mean longitudinal velocity, U , and the turbulence energy,

k, as compared with the experimental measurements. A preliminary check
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on the "correctness" of the ASM was made by substituting the calculatedIp
values of Ux, k and e into the ASM relations given in Section 3.3.3 and

solving for the Reynolds stresses. It can be seen from Figure 5.7 that,

assuming U , k and E as calculated by the k-s model were correct, theUx ,

ASM closure is capable of predicting broadly satisfactory distributions

of the Reynolds stresses.

Direct computation using the ASM closure, however, yielded mean

velocity and Reynolds stresses in poor agreement with the measurements.

In particular, the level of u uz was twice as high compared to the data.

The alternative approach of employing the isotropic k and e equations

[equations (3.3.1.11) and (3.3.1.12)], as has been done by many of the

ASM users, produced better results. Figures 5.8 to 5.10 show that the

general trend of the predictions were satisfactory, with the most serious
p

discrepancies being:

1. Very close to the wall the value of uxU x falls off instead of

rising as suggested by the data.

2. The differences between uyUy and uzu are too large.

In order to check the sensitivity of the model to the model con-

stants, a further run with C1 = 0.35 and C2 = 0.20 was carried out.

Figures 5.8 to 5.10 show that better agreement was achieved with the new

constants, especially for the distributions of uyu and Ux. Since the
!y y

same change of Cl and C2 did not produce appreciable overall improvement

in the 2D curved channel case, the originally recommended values of Cl =

0.5 and C2 = 0.3 were used in the final computations described in

Chapter 6.
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Case ii Flow in a two-dimensional curved channel.

The development of turbulent shear flows on curved surfaces is

characterized by a strong sensitivity of the turbulence structure to

streamline curvature (Bradshaw [1973]). Attempts to predict such

flows by using eddy viscosity transport closures, such as the k-E

model, have not been very successful unless empirical means to account

for curvature effects are incorporated into the models. Approaches of

this type have been reported by, among others, Launder et al. [1977]

and Humphrey and Pourahmadi [1982] with some success for moderately

curved channels. It is argued (Gibson [1978]) that only turbulence

models based upon the calculation of Reynolds stresses directly from

their transport equations can account for the streamline curvature

effects correctly.

In order to test the capability of the ASM closure for predicting

the curvature effects mentioned above, the measurements of Eskinazi

and Yeh [1956] in a curved rectangular duct of large aspect ratio was

simulated on a (r = 24) x (e = 184) unequally spaced grid. Figures

5.11 and 5.12 compare the calculated (HYBRID scheme only) distributions

of U6, u u6 , UrUr and urue with the experimental data. While the ASM

closure tends to overpredict the turbulence intensities u u and urUr

near the convex (stabilizing) wall and underpredict the values of U and

UrU near the concave (destabilizing) wall, predictions are, in general,

in good agreement with the data of Eskinazi and Yeh.

The idea of using a non-symmetric wall-proximity function f [equa-

4 _ tlons (3.3.2.6)-(3.3.2.8)], first proposed by Humphrey and Pourahmadi

[1982), was also tested. This correction produced very little changes
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" on the distribution of Ua/Ue,max and its effect on UeUe and UrUr is shown

in Figures 5.11 and 5.12. Since this non-symmetric f-function did not

yield results in better overall agreement with the data, the original

(symmetric) f-function [equation(3.3.2.8)] was retained.

0

*

e°""0
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CHAPTER 6. RESULTS AND DISCUSSION

6.1 Introduction

In this chapter, detailed measurements of developing turbulent flow

in a square cross-section 1800 bend and its upstream and downstream

tangents are presented and discussed. These data are compared with

corresponding predictions by both the k-s model and the algebraic stress

model at selected streamwise stations. Section 6.2 considers the

measurements and the k-s model predictions. Both the HYBRID and the

QUICK schemes were used in the calculations. When QUICK and HYBRID

results coincide, a single profile is shown in the figures. Otherwise,

lHYBRID results are plotted as continuous lines and QUICK as dashed

lines. It should be noted that dashed lines have also been used in

some graphs for plotting best fits to experimental data with a larger

than normal degree of scatter at the 2z/DH = 0.75 and 0.875 spanwise

locations. Section 6.3 presents the predictions with the ASM closure.

Since It has not been successful in producing converged results with

QUICK scheme at the time of writing, only HYBRID calculations are in-

cluded. Two simplified "experimental" tests of the ASM closure are

also presented in this section.

6.2 Turbulent Flow Measurements and the k-c Model Calculations

The calculation presented in this section was performed on an

unequally spaced grid consisting of the following distributions of nodes:
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(z = 14) x (r 25) x (e : 45) in the bend, and (z = 14) x (r 25) x

(x = 20) in the upstream and downstream tangents, both of length 5 D .

The grid distribution over a cross-stream plane is listed in Table 6.1.

The convergence criterion was that the maximum of the normalized resi-

dual summations at every cross-sectional plane be less than lO
-3 .

Measurements of the flow in the upstream tangent, taken at XH = -5

and -l are shown in Figures 6.3 and 6.4 respectively. Comparing the

data at these two stations, particularly the Reynolds stress measure-

ments shown in Figure 6.14, suggests that the flow is still developing

at XH = -5, after travelling a distance of 30 DH from the uniformizing

section. Figures 6.2 and 6.14 provide comparisons of the measurements

at XH = -l with corresponding profiles interpolated from the data ob-

tained by Melling and Whitelaw [1976] at 36.8 hydraulic diameters in a

straight duct of square cross-section. The two data sets are in agree-

ment to within the experimental error of the measurements. Since the

measurements by Melling and Whitelaw correspond to an essentially devel-

oped flow, the differences shown in Figure 6.2 for the radial (transverse)

velocity component are attributed mainly to the elliptic influence of

the bend on the flow in the tangent. Similar observations on the in-

fluence of a bend on its upstream tangent flow have been noted by Hum-

phrey et al. [1981) and Taylor et al. [1982] in the same 900 bend con-

figuration but with differing Inlet conditions. Taylor et al. found

that in a turbulent flow with relatively thin boundary layers the bend

influenced the measurements taken at XH = -0.75, their furthest upstream

location.. Measurements at XH = -2.5 taken by Humphrey et al. with essen-

tially fully developed flow conditions in the upstream tangent suggested
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* ,only a weak elliptic effect of the bend on the flow at this location.

However, these authors did not measure the transverse velocity compon-

ent; their commentary is based on the unchanged appearance of stream-

wise velocity and turbulence intensity contours between XH = -l and

XH = -2.5. By contrast, for the conditions of the present experiment,

the velocity data suggests that the favorable streamwise pressure

gradient along the inner wall of the bend (see Figure 6.1) induces a

mean transverse flow directed at the innerwall which is already notice-

able at XH = -5. Although weak (U /U 0.02), it appears that theHr B 00) tapasta h
transverse flow induced by pressure forces in the upstream duct over-

comes the weaker stress-driven cross-stream motion (shown clearly in

the measurements of Melling and Whitelaw), and results in Ur profiles

whose shapes, and variations of shape with z location, agree qualita-

tively with a simple superposition of the pressure-induced and stress-

driven cross-stream flows.

Calculations of Ur at e = 30 (and between this location and XH =5

not given here) always showed the flow moving towards the convex wall-

side of the test section. Because the turbulence model is insensitive

to stress-driven secondary motions, this result, and the calculated

displacement of the maximum in Ue towards the convex wall, clearly

support the experimental finding that elliptic effects are transmitted

from the bend Into the upstream tangent via the pressure field, farther

than has previously been ovserved. As with the Ur velocity component,

the discrepancies shown between calculated and measured turbulent

stresses at e = 30 arise from the assumption of isotropy in the tur-

bulence model. To predict more accurately the cross-stream motion and
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turbulent stresses in the upstream tangent requires modeling of important

anisotropic flow characteristics such as near-wall pressure-strain

effects. These effects cannot be dealt with by isotropic viscosity

models of any kind.

The mean velocity and turbulent stress data taken at different

streamwise locations in the bend are plotted in Figures 6.5-6.9 and

6.15. The pressure drop measured at the side wall of the bend is shown

in Fig. 6.1. In general, the sense of the flow up to e = 900 is in

agreement with earlier observations of, for example, Humphrey et al.

[1981] and Taylor et al. [1982]. Closer inspection of the plots reveals

additional interesting features. The measurements of the pressure coef-

ficient Cp show the opposing pressure gradient initially expected at the

concave wall and the favorable gradient at the convex. In contrast to

the data measured by Taylor et al. for a 900 bend, the maximum and

minimum values of Cp do not coincide at the same streamwise location.

In this work the value of Cp maximizes at the concave wall at e = 450,

and attains its minimum value at the convex wall at 8 = 1770. As of

450, the streamwise pressure gradient is favorable throughout most

of the bend. At B 30 the streamwise velocity profiles all shown their

maximum values displaced towards the inner radius wall, due to the

favorable streamwise pressure gradient there. The radial component of

velocity is everywhere directed towards the inner wall except for a

small flow region about the symmetry plane. This region marks the incep-

tion of secondary flow, driven by the transverse pressure gradient which

arises due to lateral curvature of the main flow in the bend. The secon-

dary flow is more intense at e = 450 as shown in Figure 6.6. At 8 = 450,
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the profile for Ur near the side wall (2z/DH = 0.75) shows a large nega-

tive velocity, while the profiles at the other z locations are large and

positive. The sense of motion is from the convex to the concave surface

along the symmetry plane, and back to the convex surface along the side

walls of the bend. As of e = 450, measurements of Ur at all z locations

show this component always positive (directed from the convex to the

concave surface). This means that the cross-stream plane return flow

adjacent to a flat wall in the bend is confined to a narrow region less

than DH/8 in width. A simplified mass balance at 8 = 900 suggests that

the radial component of velocity in this narrow region varies between 0

at the wall and a maximum of about 0.40 x UB at the peak location. This

result is in qualitative agreement with the observations of Taylor et

al. [1982]. The highest return flow measured by them (0.40 x UB) was

found at 2z/DH = 0.95 and e = 600 in a 900 bend with Re = 40,000 and

Rc/DH= 2.3. Calculations of the present flow gave a peak value of

Ur/UB = 0.30 at 2z/DH = 0.95, at the 90° plane.

Between e = 30 and 90° , the influence of destabilizing curvature

raises the levels of all the measured Reynolds stresses at the concave

wall of the bend. The effect is particularly noticeable in the plots

for the stresses at e = 450, and has decreased by the time the flow

reaches the e = 900 plane. Similar observations have been made by

Eskinazi and Yeh [1956] in a two-dimensional curved channel flow, and

by Humpnrey et al. [1981] and Taylor et al. [1982] in their respective

curved duct flows. In particular, Eskinazi and Yeh demonstrate the

strong generation of ur near a concave wall and its correspond suppression

near a convex wall. While at e = 450 the present flow is already three-
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dimensional, the results for 0r/UB are in qualitative agreement with the

observations of Eskinazi and Yeh. Destabilizing and stabilizing curva-

ture effects at the respective concave and convex walls of the present

flow are responsible for producing large levels of anisotropy. For

example, at 9 = 450, u 9/u 2 near the concave wall. Wall-dampening

of radial fluctuations in the flow, coupled with pressure redistribution

and turbulent diffusion of energy between the normal stresses, account

for the larger levels of u

At 9 = 900 and 1300, plots of the two velocity components and their

corresponding normal stresses show striking variations in the radial

coordinate direction. These take the form of relatively large decelera-

tions in the mean flow components at about n = 0.4 and are accompanied

by relatively large increases in u and decreases in Ur respectively at

the same locations. The streamwise deceleration of U9 and Ur is due to

the "pumping" of low speed fluid from the peripheral region of the duct

into the core of the flow. Whereas viscous effects provide the mechanism

for flow retardation at the walls, it is the inviscid mechanism of

lateral flow curvature which drives the cross-stream motion. The phen-

omenon has been analyzed and described in depth by Hawthorne [1951], and

Horlock and Lakshminarayana [1973] discuss it extensively in the context

of turbomachinery aerodynamics. In particular, the latter authors pro-

vide general expressions for the generation of streamwise vorticity

including the influence of Bernouilli surface rotation and viscous

effects. Hawthorne shows that in flows where the angle, 0, between

the direction of normal acceleration and the normal to the Bernoulli

surface (a surface of constant total pressure) is not 0, streamwise

.. . . . . . . . . , . . i. , . . . ,. -. .- . _ . . ................ ....................... .
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vorticity is induced. For a small bend deflection angle in a flow with

initial uniform vorticity 0 0 in the plane of the L,' .nd, the expression

derived by Hawthorne [1951] is:

= -2 0

The same result was obtained by Squire and Winter [1951) using a differ-

ent analytical approach and is valid for Bernoulli surfaces which

remain undisturbed during passage through bend (0 = constant).

It is important to realize that the inviscid mechanism acts over

the entire cross-section of the flow (provided 0 # 0). For the kind of

flow of interest here, the distortion of Bernoulli surfaces during

.. passage of the flow around the bend cannot be neglected. A first

approximation accounting for this distortion leads to an equation for

a, the angle by which the Bernoulli surfaces turn. The result derived

by Hawthorne [1951] is:

fD. \ d2a
-2= COSCa

\C) de2

This equation is analogous to that governing the motion of a pendulum

and, as shown by Hawthorne, predicts that the flow through a bend should

oscillate between a = 0 and a = n with a period (or bend angle) for a

complete oscillation approximately equal to 27r// Rc/DH. The secondary

motion is analogous to the kinetic energy of the pendulum and also

oscillates with the same period, passing through zero after each nvtH/c

radians of turn. For the present flow a complete oscillation corres-

ponds to about 1970. This means that at about 980 the inviscid mechanism



6 66

starts working to oppose the original sense of the cross-stream motion,

with a maximum negative amplitude at 9 = 1480. The result, as shown in

Figures 6.8 and 6.9 for e = 1300 and 1770, is for high speed fluid to

be restored to the core of the flow.

For 9 90° and 1300, plots of the Reynolds stresses show large

changes at the radial positions where U0 and U r have been decelerated.

Transport equations for the turbulent stresses can be obtained (Bryant

and Humphrey [1976]), and for u and u r they take the forms given below:

uu Fr " u %!6 +  r) u Luz- + Po+ D

(6.2.1)

bi D r 'Ur " UO L Uer uu Ur +Ps+D" u+ - 1 -e" r rU- + Dr

(6.2.2)
5 5In the above equations, P and P represent pressure strain redistribu-

tion terms, Da and Dr denote the effects of turbulent diffusion and

dissipation, and viscous diffusion is neglected. The terms written out

explicitly on the right-hand side of these two equations represent

generation of the stress component and, hence, of the kinetic energy of

turbulence, k. Analysis of the normal stress equations, including the

effects due to pressure strain, turbulent diffusion and dissipation,

while desirable, is hampered by the unavailability of appropriate experi-

mental data; hence, the contributions of the latter terms to the respec-

tive balances cannot presently be established. Nevertheless, simplified

analysis of the generation terms alone provides a basis for checking

consistency in the meausrements and can shed light on the behavior of
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S" -the flow. In the vicinity of the bend symmetry plane, symmetry consider-

71 ations support the notion that the generation terms in equations (6.2.1)

and (6.2.2) involving the z coordinate direction should be small rela-

tive to those involving variations in the r and e directions. Approxi-

mate balances for u2 and UT are then given by:

e u u hngie y
ue  u a + 2 Ur

A B C

- 2 + - r]

D E F

At 900 ueur is positive everywhere and, except for a small region

0.2 < n 0.4 where 3U/ar is negative, term A represents a negative

contribution to the balance of u - From e 450 to 900 the streamwise

velocity component Ue is decelerated between n = 0.2 and 0.5 by the

inviscid mechanism explained above. The result is for term B in equa-

tion (6.2.3) to contribute positively (together with term A) to the

balance of ue. At all radial locations near the symmetry plane, term C

represents a reduction in the magnitude of ue, but because of the small

values of the ratio Ur/r, the contribution of this term relative to A

and B is small. As shown in Figure 6.7 , the net result is to produce

a local increase in the magnitude of 0 between n = 0.4 and 0.5 approxi-

mately.

In a similar manner, the localized minimum in U r at n = 0.4 in the

900 plane can be explained. At all radial locations term E in equation

(6.2.4) contributes positively to the balance of ur, although weakly near
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the position of the minimum in Ur because of the small magnitude of

u u there. Between e = 450 and 900 the plots for U show that, as fore r r
Ue, Ur has also been decelerated leading to a positive contribution of

term F to the balance of ur. However, the relatively strong streamwise

deceleration in U r induces large radial variations in its profiles pro-

ducing regions in the flow where ;U r/ar is large and positive. As shown

in Fig. 6.7, this occurs between n = 0.2 (at 2z/DH = 0.75) and 0.7 (at

2z/DH = 0) and leads to a negative contribution of term D to the balance

of U2 . Since term D is the only one contributing negatively to ur it
r r

must be the cause for the local minima in the profiles for u2 ate = 9Q00

Therefore, the effect of this term in the balance must be large. It

appears that the two terms, B in equation (6.2.3) and D in equation
. ~~~2 ad2 rsetvl

(6.2.4), are the principle source and sink for ue and ur respectively

in this simplified analysis. The gradual disappearance of the maxima in

iB and the minima in Ur between e = 1300 and 1770 is due to the inviscider
oscillatory nature of the flow since, by restoring high speed fluid to

the core of the flow (see Figures 6.8 and 6.9), the respective roles of

terms B and D in equations (6.2.3) and (6.2.4) are reversed.

The anistropic effects in ue and ur discussed above can not be

reproduced by the calculations. Nor is it surprising that the minima

observed in the experimental profiles for the mean velocity components

at e = 900 and 1300 are not predicted. The assumption of local isotropy

in the turbulence model produces such large levels of false physical

diffusion as to preclude an accurate spatial resolution of the flow.

* For example, at e = 900 in the symmetry plane of the bend, estimates of

./v from the measurements suggest that the ratio is less than 10 between
,t
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= 0.1 and 0.9. However, calculations of this ratio at the same z = 0

location vary from 40 (0 < n 0.4) to 300 (0.4 < n 0.95). Although

nzanericaZ diffusion compounds the problem, the fact that it is the more

accurate QUICK scheme results which show worse agreement with the measure-

ments at this location, strongly supports the contention that the source

of false diffusion is more physical in nature (due to the model) than it

is numerical (due to the differencing scheme). In fact, the higher

levels of numerical diffusion in the HYBRID scheme distort physical

diffusion in the turbulence model and lead to the incorrect impression

of better predictions at various streamwise locations!

In general, the QUICK scheme calculations of mean radial velocity

show better qualitative agreement with the measurements than the HYBRID

results. Both schemes yield calculated values of k which are in reason-

ably good agreement with estimates of k from the measurements; with kmeas

approximated as kmeas (ue + 2 Ur). However, the agreement is mislead-

2
ing. When summed, the experimentally determined maxima in ue and the

minima in compensate to yield fairly uniform radial distributions ofr
kmeas. To indicate clearly the inadequacy of the model, the plots pro-

vided show comparisons between predicted values of 0 and 0r (calculated

assuming uk = r 3 calc and direct measurements of these stresses

at 2z/DH = 0 and 0.5.

In several of the plots, both of the profiles given for Ue at

2z/DH = 0 and 0.5 respectively show larger values of this component than

were actually measured, suggesting different values for the experimental

and computed mass flows in the streamwise direction. In fact, predic-

tions of Ue nearer the wall, not shown here, yielded values smaller than

-. . .
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those measured and gave the required mass balance.

Numerical experiments showed that a smaller length scale specifica-

tion in equation (4.4.1) (Zm 0.01 D ) at the inlet plane (XH = -5) led

to considerably reduced levels of the predicted turbulent kinetic energy.

As a consequence, even though there was much worse agreement between

predicted and estimated values of k, in the vicinity of 9 = 90' profiles

of U9 (but not of U r ) showed the local minima displayed by the measure-

ments. Again, this type of partial agreement is misleading since it is

artifically reduced physical diffsion (through the specification of a

larger dissipation at the inlet plane) which yields the result. In

general, much better overall predictions were obtained by prescribing

an inlet plane length scale variations as outlined in section 4.4

Ate = 1770 the flow in the bend shows all the maxima in the U9

profiles displaced towards the concave wall in the presence of rela-

tively large levels of transverse flow. Even though the radial velocity

component has been decreasing steadily from about e = 900 due to the

oscillatory inviscid flow mechanism, there is no evidence in the Ur

profiles at any location in the bend of a Dean instability in the vicin-

ity of the concave wall. The instability is of the type found by Taylor

in concentric cylinder flows (Dean [1928]) and has been observed experi-

mentally by, for example, Cheng et al. [1979]. It has been predicted

numerically only in laminar flow regime (Cheng et al. [1975], Joseph and

Smith [1975], and Ghia and Sohkey [1977]). Conceivably, in a bend of

larger deflection angle than the present one, the inviscid flow oscilla-

* tion could also induce an extra pair of vortices in the vicinity of the

concave wall. There is supporting evidence for this conjecture in
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Figure 8 (Station 12) of Hawthorne's paper [1951] and in the measured

results of this work at XH = 1. At this location the inviscid flow

mechanism has not ceased to apply completely because of the persistence

of streamline curvature in the flow. Such a mechanism for generating an

extra pair of vortices in the cross-stream plane is distinct from the

Dean instability which is associated with destabilizing curvature

effects. At e = 1770 both of the normal stresses display a surprising

degree of uniformity and the shear stress is small, implying that the

flow is well-mixed and relatively isotropic at this location. Except

for U r, at this station the calculations are in very good agreement

with the measurements. Although inaccurate in terms of absolute values,

QUICK scheme predictions of Ur are vastly superior to those obtained

with the HYBRID scheme. The QUICK scheme faithfully reproduces the

measured profile curvatures while the HYBRID scheme predicts negative

values where none exist in the measurements!

At XH = 1 (Figure 6.10) the secondary flow emerging from the bend

has experienced a drastic change in both its magnitude and sense. The

radial velocity component has been reduced to less than about 4% and a

transverse flow appears near the concave wall, opposite in sense to that

existing within the bend at the same radial location. A similar obser-

vation was made by Taylor et al. [1982] in their laminar flow measure-

ments at XH = 2.5. As mentioned above, the phenomenon is attributed to

the persistence of the inviscid flow mechanism downstream of the bend.

Because of the fairlyuniform and similar levels of the normal stress

components measured at e = 1770 and XH 1, it is unlikely that gradients

of these stresses are altering significantly the intensity and pattern

i 
°

, - , .- . .. . . . . * -..
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of the cross-stream flow at these stations.

As of XH = 0 the flow in the downstream tangent reverts slowly to a

straight duct flow condition, with the maximum in the Ue component tend-

ing towards the duct center. However, the maximum has moved only a

small amount, from n = 0.9 to a value of about 0.65 over a duct length

of 20 DH. Similar indications of developing straight duct flow also

appear in the profiles for the longitudinal turbulence intensity a%/UB

and the shear stress at XH = 5, 10 and 20 (see Figures 6.11-6.13 and

6.16). By contrast, the transverse components of mean velocity and tur-

bulence intensity do not show the same rates of adjustment to the new

flow conditions. The profiles for Ur indicate that as of XH = 5 a

cross-stream flow pattern, similar but much weaker to that in the bend,

arises in the downstream tangent. At XH = 2.5, their furthest downstream

station, Taylor et al. observed the same result in their turbulent flow

measurements.

The resurgence of a bend-like secondary motion in the downstream

tangent is surprising and, at present, not fully understood. Calcula-

tions of the flow between XH = 0 and 5, using the QUICK scheme are in

qualitative agreement with the measurements. In particular, the trans-

verse variations of Ur at 2z/DH = 0 and 0.5 are correctly simulated by

QUICK but incorrectly simulated by HYBRID. The persistence of a peak in

Ue near the convex-wall side of the duct at 2z/DH = 0.50 (see Fig. 6.11)

is due to turbulence model deficiencies. Because of smearing by numeri-

cal diffusion, this is not reflected in the HYBRID calculation.

Predicted cross-section vector plots and streamwise velocity con-

tours of the flow at e = 1770 using the two differencing schemes are
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given in Fig. 6.17. The results show that the HYBRID scheme predicts

two large vortices per half-symmetry plane in the bend while the QUICK

scheme predicts essentially one, with a second, much smaller counter-

rotating vortex, at the convex wall. The HYBRID results are in blatant

disagreement with the measurements, tle QUICK results are in qualitative

agreement and this situation persists up to the exit plane at XH =5.

6.3 The ASM Predictions

In this section predictions of the flow using the ASM closure are

presented and discussed. The amount of available core memory in the CDC

7600 computer at the Lawrence Berkeley'Laboratory required performing

the computations on a grid different from that reported in Section 6.2.

For the present case, the unequally spaced grid distribution initially

adopted was: (z = 12) x (r = 22) x (x = 20) in the upstream tangent of

5 DH; (z = 12) x (r = 22) x (0 = 45) in the bend; and (z = 12) x (r = 22)

x (x = 15) in the downstream tangent of 4.2 DH. The distribution of

grid nodes over a cross-stream plane is given in Table 6.2. Recent com-

putations using a finer grid size in the bend along the main flow direc-

tion yielded somewhat better results. Accordingly, 60 equally spaced

planes along the main flow direction was distributed in the bend, a

1/3 increase from what was used in all previous calculations.

As mentioned earlier, it has not yet been possible to obtain stable

and converged results with the QUICK scheme, so that only HYBRID predic-

tions are reported here. For comparison purpose, new calculations using

the k-c model (HYBRID only) with an identical grid are also included.

Transverse distributions of the predictions at z/DH = 0 and z/DH = 0.25

. . . . H
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for several streamwise planes are plotted in Figures 6.18 to 6.37. In

these figures, solid lines represent best curve fits to the experimental

data discussed earlier, dot-dash lines are the ASM predictions, and dot-

dot-dash lines are the corresponding k-e model predictions.

From an overall inspection of the results, several observations

concerning the ASM predictions can be made. They are:

1. The mean flow results are not better than those predicted with

the k-E model. In fact, at 8 = 900 (Figure 6.22), it is the k-e model

which produces better agreement with the data!

2. The ASM predicts a slower development of the secondary motion

in the bend than that predicted by the k-e model.

3. Although capable of predicting turbulence anistropy as shown

in the plots of 0r/UB and U6/UB1 the ASM predictions failed to reproduce

the experimentally observed local extrema in U8, UrI Deg Dr and urue

around n = 0.4 and 8 = 900.

Since the equation system describing the flow is highly non-linear

and strongly coupled, it is very difficult to single out the causes for

the poor agreement revealed in Figures 6.18 to 6.37. Faced with these

discouraging results, one might well ask whether or not the ASM closure

proposed in Section 3.3.2, which was developed with 2D flows in mind,

is capable of predicting such a complex, three-dimensional, highly

anisotropic turbulent flow as the present one. To answer this question,

or to at least bear light on the problem, two simplified "experimental"

tests were conducted as explained below.

First, the measurements of Ur, Ue along the symmetry plane at

e 900 (where the predictions were the worst), together with the k-c
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model estimates of k, E, and p were substituted into the ASM relations

given in Section 3.3.3.* Solving the resultant equation system yielded

the distributions plotted in Figures 6.23, 6.25 and 6.38 as the dashed

lines. It is seen that, except for Ur' the ASM is capable of predicting

the correct trends of the flow anistropy provided that accurate spatial

resolution of the mean velocities is presented to the equation system.

A second, more direct test was also performed. In addition to Ur

and UV, the measurements of U r and u were also used. Substituting these

measured quantities, together with the k-c model estimates of k, e, and

P into equation (3.3.3.4) and solving for urueyielded the much better

distribution plotted in Figure 6.38 as the dotted line.

As a result of these two tests, it is now believed that the ASM

closure proposed in Section 3.3.2 is indeed adequate for predicting com-

plex anistropic.3D turbulent flows of the present kind, provided that

accurate spatial resolution of the mean velocities is achieved. Previous

calculations using the k-e model suggested, however, that substantially

refined grid would be required to significantly improve the numerical

accuracy of the present predictions. Computation costs and memory avail-

ability simply prohibited the use of finer grids to reduce the numerical

diffusion. The alternative of using higher order differencing such as

the QUICK scheme is probably a better course to pursue.

During the course of the research, three variations of the log-wall

function approach were tested: the standard TEACH code method (Gosman

*In the absence of information concerning streamwise and spanwise varia-

tions of the velocity components, terms containing these quantities,
- including 3Ue/ae, aUr/ and 3Uz/aZ, were neglected.

e r .
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and Ideriah [1976)); the Chieng and Launder [1979) method; and the

method used by, among others, Naot and Rodi [1981]. As a consequence,

it was found that the flow pattern, especially the secondary flow

velocity components Ur and Uz, is sensitive to the way the near wall

flow is treated. However, no one of the three methods produced results

in better overal agreement with the data than the others. Because of

its simplicity, the treatment of Naot and Rodi was chosen for the cal-

culations presented above.

"-

S
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

The new measurements provided here for the mean flow in strongly

curved 1800 bends reveal features which are in qualitative agreement

with results obtained from inviscid flow analysis. Measurements of the

turbulence characteristics of the flow at e = 900 and 1300 show striking

variations in the radial direction which appear to be due to large

shearing motions induced by the inviscid mechanism in the core of the

flow. Within the context of an interpretation which neglects turbulence

diffusion and pressure redistribution effects, the velocity gradients

induced in the core of the flow work locally on the turbulent stresses

to increase the longitudinal stress component (u2) and decrease the1

radial stress component (Z.r

Between e = 0* and 450, stabilizing and destabilizing curvature

effects at the convex and concave wall respectively are responsible for

generating relatively large levels of anisotropynear these surfaces.

As of 9 = 450, the cross-stream motion contributes to the production of

a more complicated anisotropic pattern in the turbulent stresses. For

example, regions of negative production of turbulent kinetic energy arise

at 9 = 90. Between 8 = 1300 and 1770 the anistropy in the measured

normal stresses is reduced, due to the uniformizing influence of the

secondary motion in the flow.

Measurements of Ur in the bend show that, except for around - 45,

the return flow in the cross-stream plane is restricted to fairly narrow

. bands of width DH/8 adjacent to each of the side walls. The measure-I::. "
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ments of U did not reveal vortex structures at the convex wall in the• r

bend, nor at the concave wall where they might be expected to arise due

to the Dean instability. However, the sense of the cross-stream flow

at XH = 1 does suggest a brief appearance of this type of instability in

the exit tangent. Between e = 0* and XH = 20 there was no evidence in

the measurements of a significant Reynolds stress driven secondary

motion.

In this investigation the influence of the bend on the upstream

tangent flow is already noticeable at XH = -5. Although weak, a trans-

verse flow is set up at this location (and at XH = -1) of characteris-

tics which correspond with the simple notion of a superposition of two

cross-stream motions: the first induced by Reynolds stress gradients

in the cross-stream plane; the second due to the favorable streamwise

pressure gradient arising at the convex wall in the bend. In the down-

stream tangent secondary motions are drastically decreased between e =

1800 and XH = 1. The decrease is related to the oscillating nature of

the secondary motion which, as shown by inviscid flow theory and supported

by the present results, as of e = 900 has started opposing the initial

source of circulation set up by the transverse pressure gradient in the

bend. Between XH = 1 and 20 the flow reestablishes characteristics

typical of straight ducts. However, the measurements show the persis-

V" tence of a weak secondary motion in the downstream tangent with the samer sense of rotation as the flow in the bend and a slow recovery of the

radial normal stress compared to the longitudinal component.

K IPredictions of the experimental flow were first made with a k-e

r model of turbulence using a partially-parabolic numerical procedure. Two
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finite differencing techniques were used with global accuracies of first

order (HYBRID) and second order (QUICK). Testing and predictions with

QUICK in the laminar flow regime clearly showed it to be superior to

HYBRID. The differences between the results obtained using the two

schemes in turbulent flow are notable. Of the two, only QUICK repro-

duces correctly the trends in the measured cross-stream flow. The

HYBRID scheme gives the incorrect impression of better streamwise com-

ponent velocity predictions. This is due to numerical diffusion which

smears out the spacial variation of this component. Although QUICK

scheme predictions for U9 differ more from the measurements, this is

explained by the fact that with numerical diffusion reduced, it is the

false physical diffusion in the k-s model which is revealed by the com-

puted results.

Numerical experiments confirmed a fairly strong sensitivity of the

model to the inlet plane specification of dissipation. Fixing a small-

but incorrect dissipation length scale at the inlet plane led to some-

what improved predictions of the Ue component at 9 = 900, where this

component shows large changes in the transverse direction. However,

predictions of U r and of k were much less satisfactory.

In an earlier study (Chang et al. [1982]) it was reported that

predictions of turbulent flow in a 90* bend were mildly sensitive to

the sense of cross-stream flow fixed at the inlet boundary condition.

The effect was too small to alter significantly the streamwise evolution

of the flow. In this study, insignificant differences were observed

between predictions of the flow with the cross-stream motion set equal

* to zero, and predictions with the cross-stream motion specified from

)t
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the measurements. The insensitivity of the flow in a bend to the inlet

plane streamwise component of vorticity is explained by reference to

the general form of the equation for the variation of this quantity

along a streamline (Horlock and Lakshminarayana [1973]):

_(-\=.v 2

s V VR+ V

In the case of a flow entering a bend from a straight duct, generally

S>> especially near the side walls. As a consequence, the equa-

tion shows that along streamlines curving through the bend, the stream-

wise development of vorticity is due primarily to deflection of trans-

verse vorticity. Viscous diffusion of streamwise vorticity, even in

turbulent flows, is of secondary importance.

Subsequent predictions with the ASM closure did not yield better

agreement with measurements than did the k-E results. Consequently

two "experimental" tests were carried out to check indirectly the pre-

dicting ability of the ASM closure. It was found that the approximations

proposed in Section 3.3.2 are indeed capable of resolving the anisotropy

of the turbulence correctly, provided that the mean velocity field is

known accurately; i.e. with good spatial resolution.

The following recommendations are offered for continuing work:

1. Laminar flow measurements should be performed in the bend and

downstream tangent to establish definitively the superior perfor-

mance of QUICK for predicting curved duct flows and for verifying

Kthe various vortical structures predicted by this scheme.

2. More detailed turbulent flow measurements are required to under-
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stand the relaxation processes taking place in the downstream tan-

gent.

3. Modeling at the full stress equation closure level will certainly

be required to predict wall interactions accurately, including

curvature effects.

4. Fine grid calculation with the QUICK scheme using the ASM closure

is recommended. This could allow more definite conclusions to be

drawn concerning the behavior of the ASM closure.

5. It is believed that the present specifications of the log-wall

relations along all three walls are inaccurate. Since they are

essential to produce reliable predictions by means of schemes

which invoke these relations, more detailed experimental work

concerning these laws in 3D turbulent walls flows is strongly

Wm recommended.

6. In parallel to the experimental work mentioned above in 5.,

numerical experiments on the sensitivity of the flow to the model

constants K and E are recommended. In particular, the constant E

should be made functions of pressure gradients along the main flow

direction for Ue and over a cross-sectional plane for Ur and Uz.

r I



• , - .. ,. -. . °- ' ' r o . *1 , .. . - -. = r . . . . • . . -; . .- r ,

82

REFERENCES

1. Bergeles, G. (1976), "Three-Dimensional Discrete-Hole Cooling
Processes. An Experimental and Theoretical Study," Ph.D. thesis,
University of London.

2. Boussinesq, J. (1877), "Thiorie de l' coulement Tourbillant,"
M~m. Prfs. Acad. Sci., 23, p. 46, Paris.

3. Bradshaw, P. (1973), "Effects of Streamline Curvature on Turbulent
Flow," AGARDograph, No. 169.

4. Briley, W.R. and McDonald, H. (1979), "Analysis and Computation
of Viscous Subsonic Primary and Secondary Flows," AIAA Paper No.
79-1453, 4th AIAA-CFD Conference, Williamsburg, Virginia.

* 5. Brundrett, E. and Baines, W.D. (1964), "The Production and Diffu-

sion of Vorticity in Duct Flow," J. Fluid Mech., 19, p. 375.

6. Bruun, H.H. (1979), "An Experimental Investigation of Secondary
Flow Losses in Bends with Rectangular Cross Sections," CUED/A -

Turbo/TR 95, Dept. of Engr., Univ. of Cambridge.

7. Bryant, D. and Humphrey, J.A.C. (1976), "Conservation Equations
for Laminar and Turbulent Flows in General Three-Dimensional
Curvilinear Coordinates," Rep No. CHT-76-6, Imperial College of
Science & Techology.

8. Buchhave, P. (1975), "Biasing Errors in Individual Particle Measure-
ments with the LDV--Counter Signal Processor," Proc. LDV Symposium
Copenhagen, Technical Univ. of Denmark, p. 258.

9. Buchhave, P. (1979), "The Measurement of Turbulence with the
Burst-Type Laser Doppler Annemometer - Errors and Correction

Methods," Ph.D. thesis, State Univ. of New York at Buffalo.

10. Buggeln, R.C., Briley, W.R., and McDonald, H. (1980), "Computation
of Laminar and Turbulent Flow in Curved Ducts, Channels, and Pipes
using the Navier-Stokes Equations," Rep R80-920006-F, prepared for
the Office of Naval Research.

11. Burggraf, O.R. (1966), "Analytical and Numerical Studies of the
Structure of Steady Flows," J. Fluid Mech., 24, p. 113.

12. Chang, S.M., Han, T., and Humphrey, J.A.C. (1982), "Prediction of
Case 512 for the 1981-82 AFOSR-HTTM-Stanford Conference on Complex
Turbulent Flows," Vol. III, p. 1375.



83

13. Cheng, K.C., Lin, R-C., and Ou, J-W. (1975), "Graetz Problem in
Curved Rectangular Channels with Convective Boundary Condition--
The Effect of Secondary Flow on Liquid Solidification-Free Zone,"
Int. J. Heat Mass Transfer, 18, p. 996.

14. Chieng, C.C. and Launder, B.E. (1979), "Calculation of Turbulent
Heat Transport Downstream from an Abrupt Pipe Expansion," Mech.
Engr. Dept., Rep. TF/10/79, Univ. of California, Davis.

15. Dean, W.R. (1928), "Fluid Motion in a Curved Channel," Proc. Roy.
Soc. London, Ser. A, 121, p. 402.

16. Drain, L.E. (1980), "The Laser-Doppler Technique," John Wiley and
Sons Ltd., New York.

17. Durst, F., Melling, A., and Whitelaw, J.H. (1976), "Principles and
Practices of Laser-Doppler Annemometry," Academic Press, London.

18. Eichenberger, H.P. (1952), "Shear Flow in Bends," Tech. Rep. No.
2, Mass. Inst. Tech., Cambridge, Mass.

19. Eichenberger, H.P. (1953), "Secondary Flow within a Bend," J. Math.
and Phys., 32, p. 34.

20. Eskinazi, S. and Yeh, H. (1956), "An Investigation on Fully Devel-
oped Turbulent Flows in a Curved Channel," J. Aero. Sci., 23, p. 23.

21. George, W.K. (1975), "Limitations to Measurement Accuracy Inherent
in the Laser Doppler Signal," Proc. LDV Symposium Copenhagen, Tech.
Univ. of Denmark, p. 20.

22. Gessner, F.B. and Emery, A.F. (1982), "The Numerical Prediction of
Developing Turbulent Flow in Rectangular Ducts," to appear in J.
Fluid Engr.

23. Ghia, K.N. and Sokhey, J.S. (1977), "Laminar Incompressible Viscous

Flows in Curved Ducts of Regular Cross-Sections," J. Fluid Engr.,99, p. 640.

24. Gibson, M.M. (1978), "An Algebraic Stress and Heat-Flux Model for
Turbulent Shear Flow with Streamline Curvature," Int. J. Heat Mass
Transfer, 21, p. 1609.

25. Gibson, M.M. and Launder, B.E. (1978), "Ground Effects on Pressure
Fluctuations in the Atmospheric Boundary Layer," J. Fluid Mech.,
86, p. 491.

26. Goldstein, S. (ed.) (1965), "Modern Developments in Fluid Dynamics,"
Vol. I, Dover Publications, Inc., New York.



84

27. Gosman, A.D. and Ideriah, F.J.K. (1976), "TEACH-2E: A General

Computer Program for Two-Dimensional, Turbulent, Recirculating
Flows," Dept. Mech. Engr., Imperial College of Science and
Technology, London.

28. Han, T., Humphrey, J.A.C. and Launder, B.E. (1981), "A Comparison
of Hybrid and Quadratic-Upstream Differencing in High Reynolds
Number Elliptic Flows," Comput. Meths. Appl. Mech. Engr., 29,
p. 81.

29. HanjaliE, K. and Launder, B.E. (1972), "A Reynolds Stress Model
of Turbulence and Its Application to Thin Shear Flows," J. Fluid
Mech., 52, p. 609.

30. Hawthorne, W.R. (1951), "Secondary Circulation in Fluid Flow,"
Proc. Roy. Soc. London, Ser. A, 206, p. 374.

31. Hawthorne, W.R. (1963), "Flow in Bent Pipes," Proc. Seminar in
Aero. Sci., National Aero. Lab., Bangalore, India, p. 305.

32. Horlock, J.H. and Lakshminarayana, B. (1973), "Secondary Flows:
Theory, Experiment, and Application in Turbomachinery Aerodynamics,"
Ann. Rev. Fluid Mech., 5, p. 247.

33. Huang, P.G., Launder, B.E. and Leschziner, M.A. (1983), "Discreti-
zation of Non-Linear Convection Processes: A Broad Range Compari-
son of Four Schemes," TFD/83/l, Mech. Engr. Dept., Univ. of
Manchester Inst. Sci. Tech., England.

34. Humphrey, J.A.C. (1977), "Flow in Ducts with Curvature and Rough-
ness," Ph.D. thesis, Univ. of London.

35. Humphrey, J.A.C. and Pourahmadi, F. (1982), "A Generalized Algebraic
Relation for Predicting Developing Curved Channel Flow with a k-c
Model of Turbulence," Lawrence Berkeley Lab. Rep. LBL-12009 Rev. 2,
Univ. of California, Berkeley.

36. Humphrey, J.A.C., Taylor, A.M.K. and Whitelaw, J.H. (1977), "Laminar
Flow in a Square Duct of Strong Curvature," J. Fluid Mech., 83,
p. 509.

37. Humphrey, J.A.C., Whitelaw, J.H. and Yee, G. (1981), "Turbulent
Flow in a Square Duct with Strong Curvature," J. Fluid Mech., 103,
p. 443.

38. Johnston, J.P. (1978), "Internal Flows," in Turbulence, ed. by
Bradshaw, P., Topics in Applied Physics, 12, Springer-Verlag, p. 109.

39. Jones, W.P. and Launder, B.E. (1972), "The Prediction of Laminari-
zation with a Two-Equation Model of Turbulence," Int. J. Heat Mass
Transfer, 15, p. 301.

.1

I

...•. -*...



85

40. Joseph, B., Smith, E.P. and Alder, R.J. (1975), "Numerical Treat-
ment-of Laminar Flow in Helically Coiled Tubes of Square Cross-
Section," AIChE J. 21, No. 5, p. 965.

41. Joy, W. (1950), "Experimental Investigation of Shear Flow in
Rectangular Bends," M.Sc. thesis, Mass. Inst. Tech., Cambridge,
Mass.

42. Kreskovsky, J.P., Briley, W.R. and McDonald, H. (1980), "Prediction
of Laminar and Turbulent Primary and Secondary Flows in Strongly
Curved Ducts," Rep. R80-900007-12, prepared for the NASA Lewis
Res. Center.

43. Laufer, J. (1950), "Investigation of Turbulent Flow in a Two-
Dimensional Channel," TN-2123, NACA, USA.

44. Launder, B.E. (1971), "An Improved Algebraic Stress Model of Tur-
bulence," Dept. Mech. Engr., Rep. No. TM/TN/A/9, Imperial College.

45. Launder, B.E. (1980), "Turbulence Transport Models for Numerical
Computation of Fluid Flow," class notes for ME-213, Dept. Mech.
Engr., Univ. of California, Davis.

46. Launder, B.E., Priddin, C.H. and Sharma, B.I. (1977), "The Cal-
culation of Turbulent Boundary Layers on Spinning and Curved
Surfaces," J. Fluid Engr., 99, p. 231.

47. Launder, B.E., Reece, G.J. and Rodi, W. (1975), "Progress in the
Development of a Reynolds-Stress Turbulence Closure," J. Fluid
Mech., 68, p. 537.

48. Launder, B.E. and Spalding, D.B. (1972), "Mathematical Models of
Turbulence," Academic Press.

49. Launder, B.E. and Spalding, D.B. (1974), "The Numerical Computation
of Turbulent Flows," Comput. Meths. Appi. Mech. Engr., 3, p. 269.

50. Leonard, B.P. (1979), "A Stable and Accurate Convective Modelling
Procedure Based on Quadratic Upstream Interpolation," Comput.
Meths. Appl. Mech. Engr., 19, p. 59.

51. McLaughlin, D.K. and Tiederman, W.G. (1973), "Biasing Correction
for Individual Realization Laser Annemometry Measurements in

Turbulent Flows," Phys. of Fluids, 16, No. 12, p. 2082.

52. McNally, W.D. and Sockol, P.M. (1981), "Computational Methods for
Internal Flows with Emphasis on Turbomachinery," NASA-TM-82764,
presented at the Symposium on Computers in Flow Predictions and
Fluid Dynamics Experiments at the ASME Winter Annual Meeting,
Washington, D.C.

n



86

53. Melling, A. (1975), "Investigation of Flow in Non-Circular Ducts
and Other Configurations by Laser-Doppler Annemometry," Ph.D.
thesis, Univ. of London.

54. Melling, A. and Whitelaw, J.H. (1976), "Turbulent Flow in a Rec-
tangular Duct," J. Fluid Mech., 78, p. 289.

55. Nikuradse, J. (1932), "Gesetzmassigkeit der turbulenten Stromung
in glatten Rohren," Forschg. Arb. Ing. Wes., 356.

56. Naot, D. and Rodi, W. (1981), "Numerical Simulation of Secondary
Currents in Open Channel Flow with an Algebraic Stress Turbulence
Model," SFB 80/T/187, Univ. of Karlsruhe.

57. Patankar, S.V. (1980), "Numerical Heat Transfer and Fluid Flow,"
* . McGraw-Hill.

58. Perkins, H.J. (1970), "The Formation of Streamwise Vorticity in
Turbulent Flow," J. Fluid Mech., 44, p. 721.

59. Pratap, V.S. (1975), "Flow and Heat Transfer in Curved Ducts,"
Ph.D. Thesis, Imperial College, London.

60. Pratap, V.S. and Spalding, D.B. (1975), "Numerical Computations
of the Flow in Curved Ducts," Aero. Quart., 26, p. 219.

61. Reece, G.J. (1977), "A Generalized Reynolds-Stress Model of Tur-
bulence," Ph.D. thesis, Univ. of London.

62. Reynolds, W.C. (1976), "Computation of Turbulent Flows," Ann.
Rev. Fluid Mech., 8, p. 183.

63. Rodi, W. (1976), "A New Algebraic Relation for Calculating the
Reynolds Stresses," Mech. Fluid, ZAMM, 56, T219-T221.

64. Rodi, W. (1978), "Turbulence Models and Their Application in
Hydraulics--A State-of-the-Art Review," SFB 80/T/127, Univ. of
Karlsrule.

65. Rotta, J.C. (1951), "Statistische theorie nichthomogener turbulenz,"

Z. Phys., 129, p. 547.

66. Shamroth, S.J. and Gibeling, H.J. (1979), "The Prediction of the

Turbulent Flow Field About an Isolated Airfoil," AIAA paper 79-
1543.

67. Shir, C.C. (1973), "A Preliminary Numerical Study of Atmospheric
Turbulent Flows in the Idealized Planetary Boundary Layer," J.
Atmos. Sci., 30, p. 1327.



87

68. Spalding, D.B. (1972), "A Novel Finite Difference Formulation for
Differential Expressions Involving Both First and Second Deriva-
tions," Int. J. Num. Meths. Engr., 4, p. 551.

69. Squire, H.B. (1954), "Note on Secondary Flow in a Curved Circular
Pipe," Unpublished British Aero. Res. Council Rep. No. 16601.

70. Taylor, A.M.K.P., Whitelaw, J.H. and Yanneskis, M. (1982), "Measure-
ments of Laminar and Turbulent Flow in a Curved Duct with Thin
Inlet Boundary Layers," NASA-CR-3367, USA.

71. Tennekes, H. and Lumley, J.L. (1972), "A First Course in Turbulence,"MIT Press.

. !

_2



88

Range of Maximum Maximum
Systematic Error + Random Error

Quantity (deviation %) (r.m.s. %)

U/UB - 1% to 2% ± 2%

Ur/UB - % to 2% 2% to ± 3%

aE/UB - 2% to 2% ± 2% to ± 3%

rUB - 2% to 2% ± 2% to ± 4%

U2u - 2% to 2% - 3% to_± 7%

+ Error confined mainly to near wall flow regions;
does not include angular uncertainty discussed
in text.

++ Largest errors confined to small flow regions; does
not include a small positioning uncertainty of probe
volume in the flow.

Table 2.1 Estimated maximum measurement errors
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1 .020 .050

2 .040 .150

3 .070 .250

4 .110 .350

5 .151 .450

6 .200 .550

7 .249 .635

8 .300 .715

9 .351 .785

10 .400 .850

11 .449 .900

12 .500 .950

13 .551

14 .600

15 .649

16 .700

17 .751
18 .800

19 .849

20 .890

21 .930
22 .960

23 .980

Tr 1& 6.' arid distribution over a cross-stream plane for the k-c
model calculations
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r- r i )/ro-r i ) x/ (DH/2)

1 .020 .064

2 .060 .192

3 .100 .311

4 .142 .423

5 .188 .527

6 .236 .625

7 .289 .716

8 .344 .801

9 .404 .881

10 .468 .960

11 .532

12 .596

13 .656

14 .711

15 .764

16 .812

17 .858

18 .900

19 .940

20 .980

Table 6.2 Grid distribution over a cross-stream plane for the algebraic
stress model calculations
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Figure 1.1 General flow pattern of the secondary motion of the first
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Figure 2.3 Top and side view of laser-Doppler velocinieter aligned for
measurements at a bend angle e 1800. Traversing mechanism
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Figure 5.11 ASM calculation of fully developed turbulent flow in a 2D
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